61 |
Constructions of Lie GroupoidsLi, Travis Songhao 10 January 2014 (has links)
In this thesis, we develop two methods for constructing Lie groupoids.
The first method is a blow-up construction, corresponding to the elementary modification of a Lie algebroid along a subalgebroid over some closed hypersurface. This construction may be specialized to the Poisson groupoids and Lie bialgebroids. We then apply this method to three cases. The first is the adjoint Lie groupoid integrating the Lie algebroid of vector fields tangent to a collection of normal crossing hypersurfaces. The second is the adjoint symplectic groupoid of a log symplectic manifold. The third is the adjoint Lie groupoid integrating the tangent algebroid of a Riemann surface twisted by a divisor.
The second method is a gluing construction, whereby Lie groupoids defined on the open sets of an appropriate cover may be combined to obtain global integrations. This allows us to construct and classify the Lie groupoids integrating the given Lie algebroid. We apply this method to the aforementioned cases, albeit with small differences, and characterize the category of integrations in each case.
|
62 |
On Blowup of Nonlinear Heat Equation in One DimensionZou, Xiangqun 08 March 2011 (has links)
We study blowup of solutions of one-dimensional nonlinear heat equations (NLH). We consider two cases: a power nonlinearity and initial conditions having two equal absolute maxima and a polynomial nonlinearity and initial conditions having a single global maximum. We show in both cases that for a certain open set of initial conditions solutions of the NLH blow up in finite time and we find asymptotical behavior of blowup frofiles. In the first case the blowup occurs at two points while in the second case, at one point.
|
63 |
On Blowup of Nonlinear Heat Equation in One DimensionZou, Xiangqun 08 March 2011 (has links)
We study blowup of solutions of one-dimensional nonlinear heat equations (NLH). We consider two cases: a power nonlinearity and initial conditions having two equal absolute maxima and a polynomial nonlinearity and initial conditions having a single global maximum. We show in both cases that for a certain open set of initial conditions solutions of the NLH blow up in finite time and we find asymptotical behavior of blowup frofiles. In the first case the blowup occurs at two points while in the second case, at one point.
|
64 |
L-functions in Number TheoryZhang, Yichao 23 February 2011 (has links)
As a generalization of the Riemann zeta function, L-function has become one of the central objects in Number Theory. The theory of L-functions, which produces a large family of consequences and conjectures in a unified way, concerns their zeros and poles, functional equations, special values and the connections between objects in different fields. Although most generalizations are largely conjectural, there are many existing results that provide us the evidence.
In this thesis, we shall consider some L-functions and look into some problems mentioned above. More explicitly, for the L-functions associated to newforms of fixed square-free level, we will consider an average version of the fourth moments problem. The final bound is proven by considering definite rational quaternion algebras and divisor functions in them, generalizing Maass Correspondence Theorem and one of Duke's results and eventually applying the solution to Basis Problem.
We then consider the problem of expressing the central value at 1/2 of the Rankin-Selberg L-function associated to two newforms in terms of the Pertersson inner product, where one of the newforms is twisted by the derivative of some Eisenstein series.
Finally, we consider the Artin L-functions attached to irreducible $4$-dimensional $S_5$-Galois representations and deal with the modularity problem.
One sufficient condition on the modularity is given, which may help to find an affirmative example for
Strong Artin Conjecture in this case.
|
65 |
Constructions of Lie GroupoidsLi, Travis Songhao 10 January 2014 (has links)
In this thesis, we develop two methods for constructing Lie groupoids.
The first method is a blow-up construction, corresponding to the elementary modification of a Lie algebroid along a subalgebroid over some closed hypersurface. This construction may be specialized to the Poisson groupoids and Lie bialgebroids. We then apply this method to three cases. The first is the adjoint Lie groupoid integrating the Lie algebroid of vector fields tangent to a collection of normal crossing hypersurfaces. The second is the adjoint symplectic groupoid of a log symplectic manifold. The third is the adjoint Lie groupoid integrating the tangent algebroid of a Riemann surface twisted by a divisor.
The second method is a gluing construction, whereby Lie groupoids defined on the open sets of an appropriate cover may be combined to obtain global integrations. This allows us to construct and classify the Lie groupoids integrating the given Lie algebroid. We apply this method to the aforementioned cases, albeit with small differences, and characterize the category of integrations in each case.
|
66 |
Moduli of Abelian Schemes and Serre's Tensor ConstructionAmir-Khosravi, Zavosh 08 January 2014 (has links)
In this thesis we study moduli stacks \calM_\Phi^n, indexed by an integer n>0 and a CM-type (K,\Phi), which parametrize abelian schemes equipped with action by \OK and an \OK-linear principal polarization, such that the representation of \OK on the relative Lie algebra of the abelian scheme consists of n copies of each character in \Phi. We do this by systematically applying Serre's tensor construction, and for that we first establish a general correspondence between polarizations on abelian schemes M\otimes_R A arising from this construction and polarizations on the abelian scheme A, along with positive definite hermitian forms on the module M. Next we describe a tensor product of categories and apply it to the category \Herm_n(\OK) of finite non-degenerate positive-definite \OK-hermitian modules of rank n and the category fibred in groupoids \calM_\Phi^1 of principally polarized CM abelian schemes. Assuming n is prime to the class number of K, we show that Serre's tensor construction provides an identification of this tensor product with a substack of the moduli space \calM_\Phi^n, and that in some cases, such as when the base is finite type over \CC or an algebraically closed field of characteristic zero, this substack is the entire space. We then use this characterization to describe the Galois action on \calM_\Phi^n(\overline{\QQ}), by using the description of the action on \calM_\Phi^1(\overline{\QQ}) supplied by the main theorem of complex multiplication.
|
67 |
The Theta Correspondence and Periods of Automorphic FormsWalls, Patrick 14 January 2014 (has links)
The study of periods of automorphic forms using the theta correspondence and the Weil representation was initiated by Waldspurger and his work relating Fourier coefficients of modular forms of half-integral weight, periods over tori of modular forms of integral weight and special values of L-functions attached to these modular forms. In this thesis, we show that there are general relations among periods of automorphic forms on groups related by the theta correspondence. For example, if G is a symplectic group and H is an orthogonal group over a number field k, these relations are identities equating Fourier coefficients of cuspidal automorphic forms on G (relative to the Siegel parabolic subgroup) and periods of cuspidal automorphic forms on H over orthogonal subgroups. These identities are quite formal and follow from the basic properties of theta functions and the Weil representation; further study is required
to show how they compare to the results of Waldspurger. The second part of this thesis shows that, under some restrictions, the identities alluded to above are the result of a comparison of nonstandard relative traces formulas. In this comparison, the relative trace formula for H is standard however the relative trace formula for G is novel in that it involves the trace of an operator built from theta functions. The final part of this thesis explores some preliminary results on local height pairings of special cycles on the p-adic upper half plane following the work of Kudla and Rapoport. These calculations should appear as the local factors of arithmetic orbital integrals in an arithmetic relative trace formula built from arithmetic theta functions as in the work of Kudla, Rapoport and Yang. Further study is required to use this approach to relate Fourier coefficients of modular forms of half-integral weight and arithmetic degrees of cycles on Shimura curves (which are the analogues in the arithmetic situation of the periods of automorphic forms over orthogonal subgroups).
|
68 |
Moduli of Abelian Schemes and Serre's Tensor ConstructionAmir-Khosravi, Zavosh 08 January 2014 (has links)
In this thesis we study moduli stacks \calM_\Phi^n, indexed by an integer n>0 and a CM-type (K,\Phi), which parametrize abelian schemes equipped with action by \OK and an \OK-linear principal polarization, such that the representation of \OK on the relative Lie algebra of the abelian scheme consists of n copies of each character in \Phi. We do this by systematically applying Serre's tensor construction, and for that we first establish a general correspondence between polarizations on abelian schemes M\otimes_R A arising from this construction and polarizations on the abelian scheme A, along with positive definite hermitian forms on the module M. Next we describe a tensor product of categories and apply it to the category \Herm_n(\OK) of finite non-degenerate positive-definite \OK-hermitian modules of rank n and the category fibred in groupoids \calM_\Phi^1 of principally polarized CM abelian schemes. Assuming n is prime to the class number of K, we show that Serre's tensor construction provides an identification of this tensor product with a substack of the moduli space \calM_\Phi^n, and that in some cases, such as when the base is finite type over \CC or an algebraically closed field of characteristic zero, this substack is the entire space. We then use this characterization to describe the Galois action on \calM_\Phi^n(\overline{\QQ}), by using the description of the action on \calM_\Phi^1(\overline{\QQ}) supplied by the main theorem of complex multiplication.
|
69 |
The Theta Correspondence and Periods of Automorphic FormsWalls, Patrick 14 January 2014 (has links)
The study of periods of automorphic forms using the theta correspondence and the Weil representation was initiated by Waldspurger and his work relating Fourier coefficients of modular forms of half-integral weight, periods over tori of modular forms of integral weight and special values of L-functions attached to these modular forms. In this thesis, we show that there are general relations among periods of automorphic forms on groups related by the theta correspondence. For example, if G is a symplectic group and H is an orthogonal group over a number field k, these relations are identities equating Fourier coefficients of cuspidal automorphic forms on G (relative to the Siegel parabolic subgroup) and periods of cuspidal automorphic forms on H over orthogonal subgroups. These identities are quite formal and follow from the basic properties of theta functions and the Weil representation; further study is required
to show how they compare to the results of Waldspurger. The second part of this thesis shows that, under some restrictions, the identities alluded to above are the result of a comparison of nonstandard relative traces formulas. In this comparison, the relative trace formula for H is standard however the relative trace formula for G is novel in that it involves the trace of an operator built from theta functions. The final part of this thesis explores some preliminary results on local height pairings of special cycles on the p-adic upper half plane following the work of Kudla and Rapoport. These calculations should appear as the local factors of arithmetic orbital integrals in an arithmetic relative trace formula built from arithmetic theta functions as in the work of Kudla, Rapoport and Yang. Further study is required to use this approach to relate Fourier coefficients of modular forms of half-integral weight and arithmetic degrees of cycles on Shimura curves (which are the analogues in the arithmetic situation of the periods of automorphic forms over orthogonal subgroups).
|
70 |
L-functions in Number TheoryZhang, Yichao 23 February 2011 (has links)
As a generalization of the Riemann zeta function, L-function has become one of the central objects in Number Theory. The theory of L-functions, which produces a large family of consequences and conjectures in a unified way, concerns their zeros and poles, functional equations, special values and the connections between objects in different fields. Although most generalizations are largely conjectural, there are many existing results that provide us the evidence.
In this thesis, we shall consider some L-functions and look into some problems mentioned above. More explicitly, for the L-functions associated to newforms of fixed square-free level, we will consider an average version of the fourth moments problem. The final bound is proven by considering definite rational quaternion algebras and divisor functions in them, generalizing Maass Correspondence Theorem and one of Duke's results and eventually applying the solution to Basis Problem.
We then consider the problem of expressing the central value at 1/2 of the Rankin-Selberg L-function associated to two newforms in terms of the Pertersson inner product, where one of the newforms is twisted by the derivative of some Eisenstein series.
Finally, we consider the Artin L-functions attached to irreducible $4$-dimensional $S_5$-Galois representations and deal with the modularity problem.
One sufficient condition on the modularity is given, which may help to find an affirmative example for
Strong Artin Conjecture in this case.
|
Page generated in 0.0253 seconds