• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • Tagged with
  • 16
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Blowup of Nonlinear Heat Equation in One Dimension

Zou, Xiangqun 08 March 2011 (has links)
We study blowup of solutions of one-dimensional nonlinear heat equations (NLH). We consider two cases: a power nonlinearity and initial conditions having two equal absolute maxima and a polynomial nonlinearity and initial conditions having a single global maximum. We show in both cases that for a certain open set of initial conditions solutions of the NLH blow up in finite time and we find asymptotical behavior of blowup frofiles. In the first case the blowup occurs at two points while in the second case, at one point.
2

On Blowup of Nonlinear Heat Equation in One Dimension

Zou, Xiangqun 08 March 2011 (has links)
We study blowup of solutions of one-dimensional nonlinear heat equations (NLH). We consider two cases: a power nonlinearity and initial conditions having two equal absolute maxima and a polynomial nonlinearity and initial conditions having a single global maximum. We show in both cases that for a certain open set of initial conditions solutions of the NLH blow up in finite time and we find asymptotical behavior of blowup frofiles. In the first case the blowup occurs at two points while in the second case, at one point.
3

Well-posedness and blowup results for the swirl-free and axisymmetric primitive equations in a cylinder

SadatHosseiniKhajouei, Narges 02 May 2022 (has links)
This thesis is devoted to the motion of the incompressible and inviscid flow which is ax- isymmetric and swirl-free in a cylinder, where the hydrostatic approximation is made in the axial direction. It addresses the problem of local existence and uniqueness in the spaces of analytic functions for the Cauchy problem for the inviscid primitive equations, also called the hydrostatic incompressible Euler equations, on a cylinder, under some extra conditions. Following the method introduced by Kukavica-Temam-Vicol-Ziane in Int. J. Differ. Equ. 250 (2011) , we use the suitable extension of the Cauchy-Kowalewski theorem to construct locally in time, unique and real-analytic solution, and find the explicit rate of decay of the radius of real-analiticity. Furthermore, this thesis discusses the problem of finite-time blowup of the solution of the system of equations. Following a part of the method introduced by Wong in Proc Am Math Soc. 143 (2015), we prove that the first derivative of the radial velocity blows up in time, using primary functional analysis tools for a certain class of initial data. Taking the solution frozen at r = 0, we can apply an a priori estimate on the second derivative of the pressure term, to derive a Ricatti type inequality. / Graduate
4

Standing Ring Blowup Solutions for the Cubic Nonlinear Schrodinger Equation

Zwiers, Ian 05 December 2012 (has links)
The cubic focusing nonlinear Schrodinger equation is a canonical model equation that arises in physics and engineering, particularly in nonlinear optics and plasma physics. Cubic NLS is an accessible venue to refine techniques for more general nonlinear partial differential equations. In this thesis, it is shown there exist solutions to the focusing cubic nonlinear Schrodinger equation in three dimensions that blowup on a circle, in the sense of L2-norm concentration on a ring, bounded H1-norm outside any surrounding toroid, and growth of the global H1-norm with the log-log rate. Analogous behaviour occurs in higher dimensions. That is, there exists data for which the corresponding evolution by the cubic nonlinear Schrodinger equation explodes on a set of co-dimension two. To simplify the exposition, the proof is presented in dimension three, with remarks to indicate the adaptations in higher dimension.
5

Standing Ring Blowup Solutions for the Cubic Nonlinear Schrodinger Equation

Zwiers, Ian 05 December 2012 (has links)
The cubic focusing nonlinear Schrodinger equation is a canonical model equation that arises in physics and engineering, particularly in nonlinear optics and plasma physics. Cubic NLS is an accessible venue to refine techniques for more general nonlinear partial differential equations. In this thesis, it is shown there exist solutions to the focusing cubic nonlinear Schrodinger equation in three dimensions that blowup on a circle, in the sense of L2-norm concentration on a ring, bounded H1-norm outside any surrounding toroid, and growth of the global H1-norm with the log-log rate. Analogous behaviour occurs in higher dimensions. That is, there exists data for which the corresponding evolution by the cubic nonlinear Schrodinger equation explodes on a set of co-dimension two. To simplify the exposition, the proof is presented in dimension three, with remarks to indicate the adaptations in higher dimension.
6

Global Behavior Of Finite Energy Solutions To The Focusing Nonlinear Schrödinger Equation In d Dimension

January 2011 (has links)
abstract: Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears as a model in hydrodynamics, nonlinear optics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. In mathematics, one of the interests is to look at the wave interaction: waves propagation with different speeds and/or different directions produces either small perturbations comparable with linear behavior, or creates solitary waves, or even leads to singular solutions. This dissertation studies the global behavior of finite energy solutions to the $d$-dimensional focusing NLS equation, $i partial _t u+Delta u+ |u|^{p-1}u=0, $ with initial data $u_0in H^1,; x in Rn$; the nonlinearity power $p$ and the dimension $d$ are chosen so that the scaling index $s=frac{d}{2}-frac{2}{p-1}$ is between 0 and 1, thus, the NLS is mass-supercritical $(s>0)$ and energy-subcritical $(s<1).$ For solutions with $ME[u_0]<1$ ($ME[u_0]$ stands for an invariant and conserved quantity in terms of the mass and energy of $u_0$), a sharp threshold for scattering and blowup is given. Namely, if the renormalized gradient $g_u$ of a solution $u$ to NLS is initially less than 1, i.e., $g_u(0)<1,$ then the solution exists globally in time and scatters in $H^1$ (approaches some linear Schr"odinger evolution as $ttopminfty$); if the renormalized gradient $g_u(0)>1,$ then the solution exhibits a blowup behavior, that is, either a finite time blowup occurs, or there is a divergence of $H^1$ norm in infinite time. This work generalizes the results for the 3d cubic NLS obtained in a series of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key ingredients, the concentration compactness and localized variance, developed in the context of the energy-critical NLS and Nonlinear Wave equations by Kenig and Merle. One of the difficulties is fractional powers of nonlinearities which are overcome by considering Besov-Strichartz estimates and various fractional differentiation rules. / Dissertation/Thesis / Ph.D. Mathematics 2011
7

The Aluffi algebra of an ideal

Nasrollah Nejad, Abbas 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T18:27:29Z (GMT). No. of bitstreams: 2 arquivo1000_1.pdf: 571217 bytes, checksum: 93a758c7adac1d3cf14e47e2bb42147d (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2010 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nasrollah Nejad, Abbas; Simis, Aron. The Aluffi algebra of an ideal. 2010. Tese (Doutorado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2010.
8

Specialization and Complexity of Integral Closure of Ideals

Rachel Von Arb Lynn (10725408) 05 May 2021 (has links)
<div> This dissertation is based on joint work with Lindsey Hill. There are two main parts, which are linked by the common theme of the integral closure of the Rees algebra.</div><div> </div><div> In the first part of this dissertation, comprised of Chapter 3 and Chapter 4, we study the integral closure of the Rees algebra directly. In Chapter 3 we identify a bound for the multiplicity of the Rees algebra R[It] of a homogeneous ideal I generated in the same degree, and combine this result with theorems of Ulrich and Vasconcelos to obtain upper bounds on the number of generators of the integral closure of the Rees algebra as a module over R[It]. We also find various other upper bounds for this number, and compare them in the case of a monomial ideal generated in the same degree. In Chapter 4, inspired by the large depth assumption on the integral closure of R[It] in the results of Chapter 3, we obtain a lower bound for the depth of the associated graded ring and the Rees algebra of the integral closure filtration in terms of the dimension of the Cohen-Macaulay local ring R and the equimultiple ideal I. We finish the first part of this dissertation with a characterization of when the integral closure of R[It] is Cohen-Macaulay for height 2 ideals. </div><div> </div><div> In the second part of this dissertation, Chapter 5, we use the integral closure of the Rees algebra as a tool to discuss specialization of the integral closure of an ideal I. We prove that for ideals of height at least two in a large class of rings, the integral closure of I is compatible with specialization modulo general elements of I. This result is analogous to a result of Itoh and an extension by Hong and Ulrich which show that for ideals of height at least two in a large class of rings, the integral closure of I is compatible with specialization modulo generic elements of I. We then discuss specialization modulo a general element of the maximal ideal, rather than modulo a general element of the ideal I itself. In general it is not the case that the operations of integral closure and specialization modulo a general element of the maximal ideal are compatible, even under the assumptions of our main theorem. We prove that the two operations are compatible for local excellent algebras over fields of characteristic zero whenever R/I is reduced with depth at least 2, and conclude with a class of ideals for which the two operations appear to be compatible based on computations in Macaulay2.</div>
9

Critical exponents for semilinear Tricomi-type equations

He, Daoyin 16 September 2016 (has links)
No description available.
10

The Equations Defining Rees Algebras of Ideals and Modules over Hypersurface Rings

Matthew J Weaver (11108382) 26 July 2022 (has links)
<p>The defining equations of Rees algebras provide a natural pathway to study these rings. However, information regarding these equations is often elusive and enigmatic. In this dissertation we study Rees algebras of particular classes of ideals and modules over hypersurface rings. We extend known results regarding Rees algebras of ideals and modules to this setting and explore the properties of these rings.</p> <p><br></p> <p>The majority of this thesis is spent studying Rees algebras of ideals in hypersurface rings, beginning with perfect ideals of grade two. After introducing certain constructions, we arrive in a setting similar to the one encountered by Boswell and Mukundan in [3]. We establish a similarity between Rees algebras of ideals with linear presentation in hypersurface rings and Rees algebras of ideals with <em>almost</em> linear presentation in polynomial rings. Hence we adapt the methods developed by Boswell and Mukundan in [3] to our setting and follow a path parallel to theirs. We introduce a recursive algorithm of <em>modified Jacobian dual iterations</em> which produces a minimal generating set for the defining ideal of the Rees algebra.</p> <p><br></p> <p>Once success has been achieved for perfect ideals of grade two, we consider perfect Gorenstein ideals of grade three in hypersurface rings and their Rees algebras. We follow a path similar to the one taken for the previous class of ideals. A recursive algorithm of <em>gcd-iterations</em> is introduced and it is shown that this method produces a minimal generating set of the defining ideal of the Rees algebra. </p> <p><br></p> <p>Lastly, we extend our techniques regarding Rees algebras of ideals to Rees algebras of modules. Using <em>generic Bourbaki ideals</em> we study Rees algebras of modules with projective dimension one over hypersurface rings. For such a module $E$, we show that there exists a generic Bourbaki ideal $I$, with respect to $E$, which is perfect of grade two in a hypersurface ring. We then adapt the techniques used by Costantini in [9] to our setting in order to relate the defining ideal of $\mathcal{R}(E)$ to the defining ideal of $\mathcal{R}(I)$, which is known from the earlier work mentioned above.</p> <p><br></p> <p>In all three situations above, once the defining equations have been determined, we investigate certain properties of the Rees algebra. The depth, Cohen-Macaulayness, relation type, and Castelnuovo-Mumford regularity of these rings are explored.</p>

Page generated in 0.0281 seconds