• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 376
  • 131
  • 6
  • Tagged with
  • 514
  • 168
  • 146
  • 130
  • 59
  • 50
  • 40
  • 39
  • 37
  • 37
  • 36
  • 33
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Strengthening rectangular beams with NSM steel bars and externally bonded GFRP

Wuertz, Augustine F. January 1900 (has links)
Master of Science / Department of Civil Engineering / Hayder Rasheed / The technology of FRP strengthening has matured to a great extent. However, there is always room for performance improvements. In this study, external bonding of GFRP and near surface mounting (NSM) of regular steel bars is combined to improve the behavior, delay the failure, and enhance the economy of the strengthening. E-Glass FRP is selected due to its inexpensive cost and non-conductive properties to shield the NSM steel bars from corrosion. On the other hand, the use of NSM bars gives redundancy against vandalism and environmental deterioration of the GFRP. An experimental program is conducted in which four rectangular cross-section beams are designed, built, and tested in four-point bending. The first beam is tested as a control beam failing at about 12.24 kips. The second beam is strengthened using two #5 steel NSM bars and 1 layer of GFRP, both extending to the support. This beam failed at 31.6 kips. The third beam is strengthened with the same system used for the second beam. However, the NSM steel bars were cut short covering 26% of the shear-span only while the GFRP was extended to the support. This beam failed at 30.7 kips due to reaching the full flexural capacity of the section at the NSM bars cut off point and the shear stress concentration at the steel bar cut off point. The fourth beam was strengthened with same system as the third beam but then submerged in a highly concentrated saline solution for six months and then tested. This beam failed at a maximum applied load of 29.8 kips, which shows that the GFRP sheet provided good corrosion resistance from the saline solution.
152

Evaluation of concrete strength and permeability with time

Tackett, Paul M. January 1900 (has links)
Master of Science / Department of Civil Engineering / Kyle Riding / The relationship between in-place concrete strength and permeability with concrete cylinder strength and permeability with time is of interest - especially when supplementary cementitious materials (SCMs) are used. A joint research project between The University of Kansas was undergone to quantify these relationships. The permeability of concrete is directly tied to its ability to mitigate certain failure mechanisms such as corrosion and sulfate attack. The three concrete mixtures being tested by Kansas State University (KSU) vary in cementitious content as follows: (1) 100% ordinary portland cement (OPC), (2) 25% Class F fly ash (F-ash) and 75% OPC, (3) 25% Class C fly ash (C-Ash) and 75% OPC. The mixtures were also placed in three different seasons to present differing curing environmental effects. The summer slabs were cast during July and August. The fall slabs were cast in October and November. The final set of slabs were cast in March and April. Three sets of concrete specimens (lab cured, field cured and in-situ core specimens) were tested at 28, 56, 90, 180, and 360 days for strength and permeability properties. The permeability performance tests being utilized are ASTM C1202 and ASTM C642. The results have shown very desirable permeability and strength data for the mixes using blended fly ash cements. The F-ash exhibited the best high early strength and low permeability data for the summer placement season and slower strength and permeability performance at cold weather. The C-ash performed the best overall for all seasons and had the least environmental effects. The OPC performed the worst in regards to permeability and did not reach as high long term strength.
153

Groundwater, corn and cattle: an investigation on the implications of future groundwater availability on the agricultural industry in western Kansas

Bruss, Paul J. January 1900 (has links)
Master of Science / Department of Civil Engineering / David R. Steward / Kansas relies on groundwater for nearly 85 percent of the total water used each year, most of which is used for irrigation. Over the last 30 years, declining groundwater levels in some areas have put pressure on agricultural industries. Ongoing research on the usage of groundwater resources will be necessary to sustain agriculture. In this study, two groundwater models were developed to investigate groundwater availability and use in western Kansas. The first model, called the Saturated Thickness Model (STM), investigated how groundwater resources will change over the next century. The second model, called the Change in Water Level Model (CWLM), was used to forecast water use trends for three agricultural districts in western Kansas by relating the change in groundwater levels over time to the volume of water pumped for irrigation. To understand how these changes would affect the agricultural industry, the research investigated historical trends in reported groundwater use, corn production and cattle in feedyards. The results showed significant decreases in the modeled saturated thickness over the next 100 years in western Kansas. Modeled groundwater use matched reported groundwater use data relatively well. The model showed significant decreases in groundwater use over the next 100 years, with the largest decrease being in the southwest district. Overall, forecast water use trends were in agreement with current outlooks for each area. The results from the correlation analysis showed a negative relationship between groundwater use and irrigated corn production, indicating improved irrigation efficiency and crop species over the past 30 years. Further correlations showed the number of cattle on feed in a particular area increased with the amount of irrigated corn production in the same area. This implies the cattle feedyards tendency toward local source of grain. As groundwater resources decline, corn production will decrease, and changes in the agricultural landscape will require adaptation. Feedyards will need to find new sources of corn grain or change to a less water dependent feed. Further research is needed to determine where corn grain will be produced in the next 100 years, and how corn grain will be transported to feedyards in southwest Kansas.
154

Experimental determination of prestressing wire bond and splitting propensity characteristics through tensioned pullout tests

Holste, Joseph Robert January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Robert J. Peterman / This dissertation describes a testing program to evaluate the bond and splitting propensity characteristics of 5.32-mm-diameter prestressing wires. Prestressing wire reinforcement is used primarily in the production of prestressed concrete railroad ties. Twelve different 5.32-mm-diameter wires were tested in this study in order to measure bonding characteristics of the reinforcement. Establishment of the bond-slip characteristics of these reinforcement at both transfer of prestress (transfer bond) and under flexural loading (flexural bond) is necessary to enable the accurate modeling of these ties using finite elements. Transfer bond and flexure bond of various indent patterns were tested using tensioned pullouts. Specimens of various sizes with single or multiple wires were tested to determine the effects of cover and wire number on bond. Indents were machined on smooth prestressing wires to accurately compare indent geometries. Lateral expansion was tested to determine which wires have higher propensity to cause cracking or splitting. Crossties were instrumented to compare resulting lateral expansion with results found in the laboratory. The results from the testing program showed that the tensioned pullout test was able to be used to predict the transfer length of prisms made with the same reinforcement. The results also showed that the indent geometries were able to be used to predict the splitting of specimens based on the amount of slip the wire had experienced. The testing also showed the importance of concrete cover with the relation to splitting potential.
155

Development of a procedure to determine internal stresses in concrete bridge members.

Hammerschmidt, Steven F. January 1900 (has links)
Master of Science / Department of Civil Engineering / Robert J. Peterman / With aging and deterioration of bridges, evaluation of existing conditions of their structural elements becomes vital to engineers and public officials when deciding how to repair or replace the structures. The ability to obtain necessary information on these conditions is often expensive and time consuming, especially for concrete bridges where the reinforcement is not available for inspection. Employing the surface-strain relief method could allow for accurate evaluation of aged or damaged prestressed members. The surface-strain relief method was developed to measure initial or pre-existing strains in a concrete member. It involves relieving the strain in the member and measuring the change in strain. Two methods were tested—one used a linear electrical-resistance strain gage and a three-inch-diameter diamond concrete core bit to cut around the gage, and the second method used a laser-speckle imaging device and a diamond cutting wheel to create notches perpendicular to the axis of maximum strain. Both methods measured the change in strain and related it to within 10 percent of the actual fse. The method of cutting notches and the laser-speckle imaging device provided a simpler method to be implemented in the field, while the coring method achieved a higher level of accuracy and precision.
156

Infiltration controls in a tallgrass prairie at a hillslope scale

Auvenshine, Sarah D. January 1900 (has links)
Master of Science / Department of Civil Engineering / David G. Chandler / Infiltration capacity influences the ability of a soil to absorb and transmit water through macropores and micropores of the soil structure. Infiltration is primarily influenced by the soil type, which is dependent on a number of factors including parent material, climate, biological activity, and topography. Spatial controls of land use, land cover, soil texture, slope position, slope gradient and slope aspect are a few of the variables influencing infiltration capacity within a uniform soil type. The goals of the thesis are to (1) quantify the spatial distribution of soil hydraulic properties at the surface of a hillslope using one measurement method - the automated mini-disk tension infiltrometer - and several analysis methods, (2) determine the dependence of depth on soil hydraulic properties using two measurement methods, and (3) compare the results of the investigation with information from the soil survey and soil investigations. First, automated mini-disk infiltrometers were used to determine soil hydraulic properties at ten sites along a hillslope in Konza Prairie Natural Research Area. Several analysis methods were used to extract hydraulic conductivity and sorptivity values from the infiltration data. Next, large intact soil cores were extracted from three selected sites at the same hillslope and analyzed at six depths using a large disk infiltrometer. Finally, the six segments of the large soil cores were analyzed using the same methods as the field measurements with the mini-disk infiltrometers. The results of the field investigation at the ten sites show a variability of soil hydraulic properties over an assumed homogeneous landscape. The values of hydraulic conductivity and sorptivity are dependent on the method of analysis. An empirically based approach produced more realistic values than a physically based approach. The results of the laboratory investigation of the three extracted soil cores also show a dependence of method of analysis and measurement. In addition, the results show a complex relationship among landscape position, depth, and soil structure. Finally, while soil surveys and soil descriptions can provide detailed information on soil properties, an infiltration investigation at a detailed spatial scale provides quantitative values for soil hydraulic properties.
157

A new model for deflections of FRP-reinforced concrete beams

Jacobs, Quinn January 1900 (has links)
Master of Science / Department of Civil Engineering / Hayder A. Rasheed / Fiber reinforced polymer has recently become a popular replacement for steel rebar, used to reinforce concrete. Therefore much research is taking place to help develop and propose methods for best approximating the response of FRP reinforced members, to make them comparable to steel reinforced members. With this popularity comes multiple approaches to FRP deflection calculations. However, this study is significant, because it investigates the cracking moment equation adopted by ACI 318, in conjunction with state of the art deflection calculation methods. Specifically this research compares four deflection calculation methods. The first approach is proposed by Bischoff and implemented by ACI 440 in its latest revision. The second deflection calculation method is proposed by Rasheed et al. The third calculation is also suggested by Bischoff, as it is specific to four point bending. The fourth calculation method is proposed by this specific research and seeks to find a median between both the Bischoff and Rasheed equations. This fourth technique will be referred to as the Rasheed-Jacobs method, proposed to create a more conservative and relevant method for investigating the effect of cracking moment on the deflection calculations. This research was done with the help of Dr. Shawn Gross, and the database he had previously built through his investigation on FRP reinforced beams. Gross’s database shows results for 106 samples tested using the actual experimental cracking moment as well as the ultimate moment capacity values. Of these 106 samples, 56 independent samples were used to investigate three different moment levels of 0.333Mn, 0.400Mn, and 0.467Mn. From this research, Gross’s database was used to calculate the cracking moment of FRP reinforced beams based on ACI 318-08. A program was developed that uses the Gross database samples to calculate the cracking moment and deflection with the Rasheed, Bischoff, and Bischoff2 models as well as the new Rasheed-Jacobs model. This program calculates the Rasheed-Jacobs results, and then graphs the findings against the deflection values from the Rasheed, Bischoff, Bischoff2 models. These graphs showed very similar patterns amongst all four models, with the Rasheed-Jacobs results mainly falling on the more conservative side. However, when looking at the predicted deflection verse the Gross experimental deflection, the best results came from the 0.467Mn moment level, which shows consistent correlation while the lower moment levels are being less predictable using the cracking moment based on the ACI equation. It can reasonably be said that the 0.467Mn shows the best correlation between the four methods and the experimental results, because it is farther away from the actual nominal cracking moment of the FRP reinforced concrete beams.
158

Determining the transfer length in prestressed concrete railroad ties produced in the United States

Murphy, Robert Lawrence January 1900 (has links)
Master of Science / Department of Civil Engineering / Robert J. Peterman / This thesis presents results from transfer length measurements on prestressed concrete railroad ties. Results are shown from the four main producers of concrete ties in the United States. Six prestressed concrete tie plants were visited by the research team to measure transfer length on ties with various mix designs and prestressing reinforcement. After all plants had been visited, a total of nine concrete-mix designs and 10 reinforcement variations were tested. Overall, 220 transfer length measurements were conducted on prestressed concrete railroad ties during the duration of this research project. This was the first coordinated effort to measure transfer lengths in concrete railroad ties ever conducted in the industry. Concrete strains were monitored using the standard Whittemore gage, as well as a non-contact procedure called laser-speckle imaging (LSI). This method to measure transfer lengths has been developed at Kansas State University (KSU). Ties measured using the Whittemore gage were sent back to the civil engineering structural laboratory at KSU so the long-term transfer lengths could be monitored. After a certain period of time, the ties were load-tested according to the American Railway Engineering and Maintenance-of-Way Association (AREMA) loading specifications of the rail-seat positive moment test.
159

Seismic Performance of Steel Moment-resisting Frames with Nonlinear Replaceable Links

Shen, Yunlu 14 July 2009 (has links)
This thesis presents the development and the seismic performance evaluation of steel MRFs with nonlinear replaceable links. Although existing MRFs can provide life safety during a design level earthquake, they are expected to sustain significant damage at the locations of flexural yielding fuses in the beams. The design of the fuse is also interlinked with the design of the beam, often resulting in over-design. These drawbacks can be mitigated by introducing replaceable links at the locations of expected inelastic action. Four full-scale beam-to-column subassemblages with two link types were tested under cyclic loading: i) double channels with bolted web connections, ii) W-sections with bolted end plate connections. The experiments demonstrated that MRFs with replaceable links can provide strength and ductility equivalent to existing MRFs. Finite element models were then developed to capture the observed experimental responses, including local buckling, bolt slipping, and bolt bearing. Finally, preliminary design guidelines were proposed.
160

Comparisons between MATSim and EMME/2 on the Greater Toronto and Hamilton Area Network

Gao, Wenli 07 August 2009 (has links)
The agent-based micro-simulation modelling technique for transportation planning is rapidly developing and is being applied to practice in recent years. In contrast to conventional four-step modelling with static assignment theory, this emerging technique employs a dynamic assignment principle. Based on summary of various types of traffic assignment models and algorithms, the thesis elucidates in detail the theories of two models, MATSim and EMME/2, which represent two genres of traffic assignment, i.e., dynamic stochastic stationary state assignment and static deterministic user equilibrium assignment. In the study, the two models are compared and validated to reflect both spatial and temporal variation of the traffic flow pattern. The comparison results indicate that numerical outputs produced by MATSim are not only compatible to those by EMME/2 but more realistic from a temporal point of view. Therefore, agent-based micro-simulation models reflect a promising direction of next generation of transportation planning models.

Page generated in 0.0279 seconds