• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 376
  • 131
  • 6
  • Tagged with
  • 514
  • 168
  • 146
  • 130
  • 59
  • 50
  • 40
  • 39
  • 37
  • 37
  • 36
  • 33
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Investigation of the Maximum Shear Capacity of High-strength Reinforced Concrete Beams

Caprara, Loreto Nicola 21 November 2012 (has links)
In 2011, Roger Xu (UToronto) carried out an experimental study to investigate shear reinforcement ratios required to cause crushing of diagonal struts in high-strength reinforced concrete I-beams. Xu’s experimental results were found to be inconclusive due to detailing issues resulting in flange splitting and web blow-out. This thesis outlines an experimental test programme completed in Spring 2012 to mitigate the issues encountered by Xu. Through experimental observation, data acquisition, and numerical analysis, the test program described in this thesis is shown to overcome the aforementioned issues. The study is expanded upon with an additional test series of rectangular beams aimed to examine the applicability of the maximum shear capacity provision of the Canadian Standards Association (CSA) A23.3-04 design standard. Test data suggests that the 0.25fc'bwdv upper limit for shear reinforcement used in CSA A23.3-04 cannot be reliably attained when using high strength concrete.
122

The Effect of Bonded Reinforcing Steel on Increase in Stress in Unbonded Prestressing Steel at Ultimate State

Wei, Sisi 19 March 2013 (has links)
To investigate the benefit induced by adding a small amount of bonded reinforcing steel into a fully unbonded prestressed concrete beam, two well-founded and straightforward approaches for predicting tendon stress are proposed. The primary approach utilizes a flexural analysis to calculate member deformation. The supplementary approach employs a truss model to consider the additional member deformation due to shear force. Both approaches use a simplified iterative method. With these two approaches, a systematic parametric study is conducted to investigate the effects of various factors. The results indicate that adding little bonded reinforcement does significantly increase the stress increment in unbonded tendons at ultimate state for one-point loading as expected. Moreover, a lower span-to-depth ratio, the use of high-strength concrete, and a smaller mechanical reinforcement ratio also raise the stress increment.
123

Assessment of Flatbed Scanner Method for Quality Assurance Testing of Air Content and Spacing Factor in Concrete

Nezami, Sona 16 July 2013 (has links)
The flatbed scanner method for air void analysis of concrete is investigated through a comparison study with the standard ASTM C457 manual and Rapid Air 457 test methods. Air void parameters including air content and spacing factor are determined by image analysis of a large population of scanned samples through contrast enhancement and threshold determination procedures. It is shown that flatbed scanner method is giving comparable results to manual and Rapid Air 457 methods. Furthermore, a comparison of the air void chord length distributions obtained from the two methods of flatbed scanner and Rapid Air 457 has been implemented in this research. The effect of having different settings in the scanning process of scanner method is also investigated. Moreover, a threshold study has been performed that showed the flatbed scanner method can be employed in combination with manual and Rapid Air 457 methods as a time and cost saving strategy.
124

An Investigation of the Heat and Moisture Performance of a Ventilated Masonry Retrofit for Historic Structures

Pearson, Nastassja 30 March 2011 (has links)
Insulating historic masonry buildings will improve thermal performance. However, heritage requirements often limit the addition of insulation to the interior surface. This can lead to colder and wetter walls. Freezing temperatures coupled with high moisture levels in the brick leave the walls susceptible to frost damage. Current retrofit designs attempt to control condensation of interior moisture. However, these designs do not consider exterior moisture sources, nor do they allow for interstitial moisture to be easily removed. This thesis presents an innovative, ventilated masonry retrofit that utilizes drainage and drying to address moisture accumulation issues. Computer simulations are used to assess and compare the hygrothermal performance of typical and ventilated masonry retrofits. The results show masonry moisture contents are reduced when ventilation drying is provided. Further, these simulations show it may be possible to increase thermal insulation levels in historic masonry buildings without damaging the very façade to be preserved.
125

A method of strengthening monitored deficient bridges

Decker, Brandon Richard January 1900 (has links)
Master of Science / Department of Civil Engineering / Hayder A. Rasheed / There is a high need to repair or replace many bridges in the state of Kansas. 23% of the bridges in Kansas are labeled structurally deficient or functionally obsolete. A majority of these bridges serve rural areas and are damaged due to overloading during harvest season. A state-of-the-art method of performing structural health monitoring on these bridges followed by an effective method of strengthening and repair was researched and presented in this thesis. The first phase of this research involved researching multiple devices to be used for state-of-the-art health monitoring. After deciding on an appropriate system, multiple tests were performed to determine the systems performance compared against conventional systems. The system was tested on a laboratory scale pre-stressed concrete T-beam. The system was tested on its ability to effectively record and transmit acceleration data. If this system were to be implemented on an actual bridge, KDOT could make a decision to repair or strengthen the bridge based on the results. The next phase of the research was to determine an effective strengthening procedure using carbon fiber reinforced polymer (CFRP). Reinforced concrete beam specimens were cast and tested in the lab. The specimens consisted of rectangular and T-shaped cross-sections to create different failure modes when tested in bending. The primary issue when strengthening with CFRP is the issue of early separation failure when using CFRP in the longitudinal direction only. In an effort to prove this, the specimens were strengthened with five layers of CFRP and tested in four-point bending until failure. In an effort to prevent early separation failure, CFRP “U-wraps” were applied to provide shear resistance and additional anchorage for the flexural CFRP. The beams were then tested in flexure until failure by FRP rupture or concrete crushing followed by FRP rupture. The test results indicate that the U-wraps allowed the FRP to reach full capacity and fail in FRP rupture. The use of CFRP provided a strength increase of about 220% over the control beam specimens while significantly reducing the ultimate deflection.
126

Evaluation of the feasibility of posting reduced speed limits on Kansas gravel roads

Liu, Litao January 1900 (has links)
Master of Science / Department of Civil Engineering / Sunanda Dissanayake / In the United States, the mileage of unpaved roads is about 1.6 million miles. Total length of unpaved roads in Kansas is about 98,000 miles, of which about 78,000 miles are gravel roads. Most of the gravel roads are not posted with speed limit signs but regulated with a 55 mph blanket speed limit established by the Kansas Statutes. Surface conditions of gravel roads are very likely to change with time, space, and quality of maintenance work, making it even more necessary to have proper control of speeds on gravel roads. Normally used speed regulations and rules for freeways or other types of paved roadways might not be appropriate for gravel roads, especially for those local gravel roads which usually carry very low traffic in rural areas. Based on an extensive literature search, there was no specific rule or references to provide guidelines on how speed limits on gravel roads could be set. Therefore, an effort was made in this study to evaluate the effects of currently posted lower speed limits in some counties in Kansas, based on traffic characteristics and safety on gravel roads, with the intention of providing proper guidelines for setting speed limits on gravel roads in Kansas. In order to study traffic characteristics on gravel roads, field speed studies were conducted with automatic traffic counters on more than forty gravel road sections in seven counties in Kansas. Important speed measures, such as 85th-percentile speed and mean speed, were obtained from the raw data. A group of other related road characteristics were also recorded at the time of field data collection. Crash data on gravel roads were extracted from the Kansas Accident Recording System (KARS) database. Speed analysis on a number of gravel roads where the statutory imposed, unposted speed limit of 55 mph was utilized indicated that they are functioning at a reasonably acceptable level in terms of actual speeds. In order to evaluate whether there were differences in traffic speeds between two counties or groups which have different speed limit settings on gravel roads, t-test was used. The analysis found that there was no significant difference between the mean speeds in two counties, one of which has 35 mph posted speed limit on gravel roads while the other does not post any speed limits. Moreover, the mean speed on the sections with 35 mph posted speed was a little higher than that on gravel roads without any speed limits. Linear models to predict 85th-percentile speed and mean speed on gravel roads were developed based on speed data. Both models indicated that traffic speeds are not significantly affected by the speed limit, but are related with 90% confidence to road width, surface classification and percentage of large vehicles in traffic. Chi-square tests were conducted with the crash data, and the results indicated that the posted 35 mph speed limit on gravel roads had not resulted in either smaller total number of crashes or decreased proportion of severe crashes, compared to gravel roads where no speed limits were posted. Logistic regression models were also developed on four levels of crash severity, which indicated that gravel roads with higher speed limits are likely to experience higher probability of having injury crashes. Two mail-back surveys were also conducted to gather the opinions of county engineers and road users on the subject of suitable speed limits on gravel roads. The majority of county engineers believed that blanket speed limit should be used for gravel roads and does not need to be posted. Three restrictions: changeful road conditions, unpractical law enforcement, and limited funds, are basic reasons why they do not think that gravel roads should be posted. Besides that, a few respondents said 55 mph is too high for gravel roads and needs to be lowered. Majority of the road users suggested that all gravel roads be posted with lower speed limit signs. However, they were more concerned about law enforcement since they believe that posted speeds won't bring any benefits if no law enforcement patrol gravel roads. Based on all aspects looked into in this study, it does not appear that reducing the speed limits and posting it with signs, is going to improve either traffic operational or safety characteristics on gravel roads in Kansas, and therefore is not recommended for new situations.
127

Distributed Hydrologic Modeling For Streamflow Prediction At Ungauged Basins

Bandaragoda, Christina 01 May 2008 (has links)
Hydrologic modeling and streamflow prediction of ungauged basins is an unsolved scientific problem as well as a policy-relevant science theme emerging as a major challenge to the hydrologic community. One way to address this problem is to improve hydrologic modeling capability through the use of spatial data and spatially distributed physically based models. This dissertation is composed of three papers focused on 1) the use of spatially distributed hydrologic models with spatially distributed precipitation inputs, 2) advanced multi-objective calibration techniques that estimate parameter uncertainty and use stream gauge and temperature data from multiple locations, and 3) an examination of the relationship between high-resolution soils data and streamflow recession for use in a priori parameter estimation in ungauged catchments. This research contributes to the broad quest to reduce uncertainty in predictions at ungauged basins by integrating developments of innovative modeling techniques with analyses that advance our understanding of natural systems.
128

Groundwater elevation estimation model in the sloping Ogallala aquifer

Mzava, Philip G. January 1900 (has links)
Master of Science / Department of Civil Engineering / David R. Steward / A one-dimensional model was developed to study the flow of groundwater in the sloping Ogallala Aquifer at a steady state during predevelopment condition. The sloping base was approximated using a stepping base model. GIS applications were applied during data collection and preparation, and later during interpretation of model results. Analytical and numerical methods were employed in the development of this model which was used to try to understand long-term water balance in the study region. The conservation of mass was achieved by balancing groundwater input, output, and storage; this led to understanding the interactions of groundwater and surface water in the predevelopment conditions. The study resulted in identification of where natural discharge from groundwater to surface water occurred, and the quantity of these flows was obtained. The Ogallala Aquifer is thick in the south western part of Kansas, this region had an average saturated thickness of 100m during predevelopment conditions. The model found that groundwater flowed at a discharge per width of approximately 17 m[superscript]2/d in this region. The aquifer thickness tends to gradually decrease from west to east and from south to north. The northern part had an average saturated thickness of 40m during predevelopment conditions; the model found that groundwater flowed at a discharge per width of approximately 3 m[superscript]2/d in this region. It was also found that groundwater leaves the Ogallala Aquifer on the eastern side with discharge per width between 0-3 m[superscript]2/d. The discharge from groundwater to surface water was summed over contributing areas to river basins. The discharge to streams necessary to satisfy long-term conservation of mass computed by the model showed that Cimarron River has total baseflow of about 5.5 m[superscript]3/s; this was found to be almost 100% of the total streamflow recorded during predevelopment conditions. The Arkansas River was found to have total baseflow of about 0.97 m[superscript]3/s, which is approximately 14.3% of the total streamflow recorded during predevelopment conditions. The Smoky Hill River was found to have total baseflow of about 1.7 m[superscript]3/s, which is approximately 73.9% of the total streamflow recorded during predevelopment conditions. The Solomon River was found to have total baseflow of about 0.95 m[superscript]3/s, which is approximately 41.1% of the total streamflow recorded during predevelopment conditions. The Saline River was found to have total baseflow of about 0.25 m[superscript]3/s, which is approximately 62.5% of the total streamflow recorded during predevelopment conditions. The Republican and Pawnee River was found to have total baseflow of about 0.38 m[superscript]3/s and 0.22 m[superscript]3/s, which is approximately 18.5% and 12.6% of the total streamflow in the predevelopment conditions respectively. The model was found to be always within -16 to +12 meters between observed values and the model results, with an average value of 0.15m and a root mean square error of 1.98m. Results from this study can be used to advance this study to the next level by making a transient model that could be used as a predictive tool for groundwater response to water use in the study region.
129

Characteristics and contributory causes associated with fatal large truck crashes

Bezwada, Nishitha Naveen Kumar January 1900 (has links)
Master of Science / Department of Civil Engineering / Sunanda Dissanayake / One-ninth of all traffic fatalities in the United States (U.S.) in the past five years have involved large trucks, although large trucks contributed to only 3% of registered vehicles and 7% of vehicle miles traveled. This crash overrepresentation indicates that truck crashes in general tend to be more severe than other crashes, though they constitute a smaller portion of vehicles on the road. To study this issue, fatal crash data from the Fatality Analysis Reporting System (FARS) was used to analyze characteristics and factors contributing to truck-involved crashes. Driver, vehicle, and crash-related contributory causes were identified, and as an extension, the likelihood of occurrence of these contributory causes in truck-involved crashes (with respect to non-truck crashes) was evaluated using the Bayesian Statistical approach. Likelihood ratios indicated that factors such as stopped or unattended vehicles and improper following have greater probability of occurrence in truck crashes than in non-truck crashes. Also, Multinomial Logistic Regression was used to model the type of fatal crash (truck vs. non-truck) to compare the relative significance of various factors in truck and non-truck crashes. Factors such as cellular phone usage, failure to yield right of way, inattentiveness, and failure to obey traffic rules also have a greater probability in fatal truck crashes. Among several other factors, inadequate warning signs and poor shoulder conditions were also found to have greater predominance in contributing to truck crashes than non-truck crashes. By addressing these factors through the implementation of appropriate remedial measures, the truck safety experience could be improved, which would eventually help in improving overall safety of the transportation system.
130

Characteristics and risk factors associated with work zone crashes

Akepati, Sreekanth Reddy January 1900 (has links)
Master of Science / Department of Civil Engineering / Sunanda Dissanayake / In the United States, approximately 1,100 people die and 40,000 people are injured annually as a result of motor vehicle crashes in work zones. These numbers may be a result of interruption to regular traffic flow caused by closed traffic lanes, poor traffic management within work zones, general misunderstanding of problems associated with work zones, or improper usage of traffic control devices. In regard to safety of work zones, this study was conducted to identify characteristics and risk factors associated with work zone crashes in Iowa, Kansas, Missouri, Nebraska and Wisconsin, states currently included in the Smart Work Zone Deployment Initiative (SWZDI) region. The study was conducted in two stages. In the first stage, characteristics and contributory causes related to work zone crashes such as environmental conditions, vehicles, crashes, drivers, and roadways were analyzed for the five states for the period 2002-2006. An analysis of percentage-wise distributions was carried out for each variable based on different conditions. Results showed that most of the work zone crashes occurred under clear environmental conditions as during daylight, no adverse weather, etc. Multiple-vehicle crashes were more predominant than single-vehicle crashes in work zone crashes. Primary driver-contributing factors of work zone crashes were inattentive driving, following too close for conditions, failure to yield right of way, driving too fast for conditions, and exceeding posted speed limits within work zones. A test of independency was performed to find the relation between crash severity and other work zone variables for the combined states. In the second stage, a statistical model was developed to identify risk factors associated with work zone crashes. In order to predict injury severity of work zone crashes, an ordered probit model analysis was carried out using the Iowa work zone crash database. According to findings of the severity model, work zone crashes involving trucks, light duty vehicles, vehicles following too close, sideswipe collisions of same-direction vehicles, nondeployment of airbags, and driver age are some of the contributing factors towards more severe crashes.

Page generated in 0.0207 seconds