• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 376
  • 131
  • 6
  • Tagged with
  • 514
  • 168
  • 146
  • 130
  • 59
  • 50
  • 40
  • 39
  • 37
  • 37
  • 36
  • 33
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Investigation of Glass Fibre Reinforced Polymer (GFRP) Bars as Internal Reinforcement for Concrete Structures

Johnson, David Tse Chuen 22 July 2014 (has links)
Glass Fibre Reinforced Polymer (GFRP) internal reinforcing bars are being increasingly considered as a potential corrosion free alternative to regular and stainless steel reinforcing bars. In spite of the availability of code provisions governing both design and certification of the GFRP bars, their use within concrete structures is currently limited to very specific applications unless some behaviour aspects are further investigated. In particular, crack control, ultimate member deformability and the behaviour of the bent GFRP bars are areas in need of such further investigation. An experimental program was conducted consisting of 24 large-scale beams reinforced with various types of GFRP and steel bars complying with CSA certification standards. The results of which show that the stress in the bent bar stirrups at beam failure exceeded minimum code-prescribed values for design (CSA S6, CSA S806, ACI440). An alternative bend-less system of shear reinforcement using straight double headed bars was successful as shear reinforcement but did however result in significant reductions to member deformability. A critical review of the various design provisions incorporating GFRP shear reinforcement, it was found that many of the design codes use conservative shear reinforcement strengths coupled with unconservative values of either the angle of inclination of the compression strut or the concrete contribution to shear resistance. A new relationship for the inclination of the compression strut was proposed for use within the Simplified Modified Compression Field Theory which when combined with the bend/anchor strength of the shear reinforcement correlate well with the experimental results. Also, it was determined that the design strain limits for GFRP shear reinforcement should not be increased until more detailed studies on the long-term performance of the stirrups are conducted. Finally, advanced analysis techniques like layered sectional- and finite element-analysis both gave excellent analytical estimates of the experimental beam response.
102

Tension Stiffening and Cracking Behaviour of GFRP Reinforced Concrete

Kharal, Zahra 26 June 2014 (has links)
Glass Fibre-Reinforced Polymer (GFRP) bars offer a feasible alternative in locations where steel is not the suitable reinforcement; namely locations that are sensitive to corrosion. In this study 60 specimens, 52 GFRP reinforced and 8 steel reinforced, were constructed and tested under direct tension in order to investigate the tension stiffening and cracking behaviour. The effects of different variables such as the bar type, the bar diameter, the reinforcement ratio and the concrete strength on tension stiffening and crack spacing were studied. The current code provisions for tension stiffening, namely ACI-440 and CEB-FIP were evaluated against the obtained test data. It was determined that the current code provisions significantly overestimate tension stiffening in GFRP reinforced specimens. A new tension stiffening model was, therefore, developed that provides better simulation of the test data. The CEB-FIP 1978 model for crack spacing was also modified for GFRP reinforced members.
103

Ultrafiltration Fouling: Impact of Backwash Frequency and Air Sparging

Li, Lan 26 June 2014 (has links)
A bench-scale study was performed to optimize backwash frequency and air sparging conditions during ultrafiltration (UF) of natural surface waters in order to maximize water production and minimize irreversible fouling as well as operating and maintenance costs. Surface shear stress representing different air sparging conditions (continuous coarse bubble, discontinuous coarse bubble, and large pulse bubble sparging) was applied in combination with various backwash frequencies (0.5, 2 and 6 h) and fouling was assessed. Results indicated that air sparging with discontinuous coarse bubbles or large pulse bubbles significantly reduced the irreversible fouling rate while providing cost savings when compared to the baseline condition, which assumed a 0.5 h-backwash frequency and no air sparging during filtration. Cost savings were more pronounced at lower backwash frequencies, due to value associated with extra water produced over longer filtration times and longer membrane life resulted from fewer recovery chemical cleans because of lower irreversible fouling.
104

Tension Stiffening and Cracking Behaviour of GFRP Reinforced Concrete

Kharal, Zahra 26 June 2014 (has links)
Glass Fibre-Reinforced Polymer (GFRP) bars offer a feasible alternative in locations where steel is not the suitable reinforcement; namely locations that are sensitive to corrosion. In this study 60 specimens, 52 GFRP reinforced and 8 steel reinforced, were constructed and tested under direct tension in order to investigate the tension stiffening and cracking behaviour. The effects of different variables such as the bar type, the bar diameter, the reinforcement ratio and the concrete strength on tension stiffening and crack spacing were studied. The current code provisions for tension stiffening, namely ACI-440 and CEB-FIP were evaluated against the obtained test data. It was determined that the current code provisions significantly overestimate tension stiffening in GFRP reinforced specimens. A new tension stiffening model was, therefore, developed that provides better simulation of the test data. The CEB-FIP 1978 model for crack spacing was also modified for GFRP reinforced members.
105

Ultrafiltration Fouling: Impact of Backwash Frequency and Air Sparging

Li, Lan 26 June 2014 (has links)
A bench-scale study was performed to optimize backwash frequency and air sparging conditions during ultrafiltration (UF) of natural surface waters in order to maximize water production and minimize irreversible fouling as well as operating and maintenance costs. Surface shear stress representing different air sparging conditions (continuous coarse bubble, discontinuous coarse bubble, and large pulse bubble sparging) was applied in combination with various backwash frequencies (0.5, 2 and 6 h) and fouling was assessed. Results indicated that air sparging with discontinuous coarse bubbles or large pulse bubbles significantly reduced the irreversible fouling rate while providing cost savings when compared to the baseline condition, which assumed a 0.5 h-backwash frequency and no air sparging during filtration. Cost savings were more pronounced at lower backwash frequencies, due to value associated with extra water produced over longer filtration times and longer membrane life resulted from fewer recovery chemical cleans because of lower irreversible fouling.
106

A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Veenstra, Ryan Llewellyn 13 August 2013 (has links)
Underground mining can be summarized as the removal of economically viable volumes of rock which creates underground voids. In order to optimize ore extraction, a material is used to backfill these openings prior to creating any adjacent openings. The use of cemented paste backfill (CPB), a mixture of mine tails, water, and cement binder, has gained prominence as it not only provides a material that has engineered strength and can be deployed rapidly, but also decreases the surface storage volume of the mine tails. There is limited knowledge about the behavior of the stresses within the CPB during the filling of an underground opening, particularly during the early curing ages of the hydrating CPB which is critical to the design of fill barricades. This thesis presents a design procedure which can be used to determine the in situ stresses within the CPB. Three methodologies were used in the development of this design procedure. The first was to develop a laboratory testing method that determined the time-dependent consolidation characteristics and strength parameters of the hydrating cemented paste material. The second was to collect several field-data sets. The third methodology was to numerically model the CPB using Itasca’s FLAC3D, which incorporated the underground void’s geometry, backfilling strategy, and time-dependent backfill parameters in order to determine the in situ stresses of the CBP. This simulation allowed for the prediction of both total and effective stress throughout the stope. The model and the laboratory results were used to model the stresses in several test stopes so that a comprehensive comparison could be made between the model and field instrumentation results. Four case studies were examined using a total of six different field instrumentation datasets. The results from these case studies showed that the modeling approach, given some model calibration, is capable of quantitatively representing the important geomechanical aspects of paste filling and curing.
107

Performance Measurement of Water Distribution Systems (WDS). A Critical and Constructive Appraisal of the State-of-the-art

Moradi Jalal, Mahdi 24 February 2009 (has links)
Water supply and distribution infrastructures are vital for current life. They have a significant role in public health, providing safe water for drinking and human consumption as well as for essential non-potable uses such as fire fighting. These diverse objectives create challenges for everyone who must address in some way the actual performance of the system. This research critically evaluates all common objectives of conventional design approaches and evaluates the advantages and drawbacks of various performance measures. New ideas for a more realistic and comprehensive approach to the design, operation assessment of WDS are proposed. A new approach, called a Risk-based Performance Assessment, for hydraulic performance evaluation is tentatively proposed. It is based on integration of reliability, resiliency, and vulnerability as three basic operational indices in the operation of WDS. Furthermore, the Total Life-cycle Cost evaluation approach is tentatively proposed based on considering all major costs of a WDS.
108

Integrating Transit Pass Ownership into Mode Choice Modelling

McElroy, David P. 22 September 2009 (has links)
The relationship between monthly transit pass ownership and home-work trip mode choice in the Greater Toronto Area was explored using a logit formulation. A Nested Logit model was specified with the primary mode (non-motorised, auto, transit, or auto access to transit) in the upper level and the pass ownership in the lower transit nests. Inclusive value parameters confirm the chosen structure, and a range of policy sensitive, statistically significant parameters having expected signs and magnitudes reveal differences between socio-economic characteristics of pass holders and non-pass holders. In particular, pass holders are less likely to possess a driver’s license or automobile than non-pass holders, implying that passes can be thought of as complementary mobility tools. Cost parameters, which include differentiated pricing for pass and non-pass holders, result in plausible in-vehicle values of time of approximately $31/hour, $33/hour and $8/hour for auto, auto access to transit, and transit all way, respectively.
109

Ontario’s Energy - A Review of the Present and a Proposal for Future Development

Kumar, Gaurav 27 July 2010 (has links)
The work presents a framework for analyzing complex decision making in policy from the perspective of planning power supply mix for Ontario. Concepts of sustainability are introduced and analyzed followed by an in-depth view of two case studies. The first analyzes the power supply mix for Ontario and the second analyzes policy impacts in Germany and Denmark. A linear programming model, including energy storage is then developed that would yield an optimized sustainability based development policy for electricity production in Ontario. Future work is recommended to calibrate and run the model. The analysis discusses the new model in relation to the first case study and provides a mechanism to evaluate tradeoffs traditionally unquantifiable, to yield a strategic plan for electricity development in Ontario.
110

Using Thermal Profiles of Cemented Paste Backfill to Predict Strength

Mozaffaridana, Mahsa 23 August 2011 (has links)
Measurement of the strength development of Cemented Paste Backfill in laboratory cast cylinders does not replicate the in situ strengths of CPB in mine stopes. The mass of CPB in a filled stope is large and temperature rises due to the heat of hydration of the cementing materials, thus accelerating the gain in strength, relative to laboratory specimens stored at ambient temperature. The purpose of this study was to determine the impact on strength development when CPB test cylinders were subjected to a temperature profile mimicking that in a large mass, such as a mine stope. Also, maturity (the integral of time and temperature during hydration of the CPB) was compared to actual strengths, and the maturity – strength concept used in concrete technology was applied. It was found that the strength- maturity relationship was applicable to CPB once the base line or datum temperature was adjusted.

Page generated in 0.0542 seconds