• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Corn and forage sorghum yield and water use in Western Kansas

Waite, Jason January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / P.V. Vara Prasad / The Ogallala Aquifer is a large underground water source located under the High Plains and is used as the primary irrigation source for producers in the region. Hyper-extraction of the Ogallala is causing a reduction in irrigation capacity for a large part of the region. Confined animal feeding operations in western Kansas rely upon irrigated crops, mainly corn [Zea mays (L.)] as a source of feed. Research has shown that forage sorghum [Sorghum bicolor (L.) Monech] could meet the demands of the confined animal feeding operations while using less water than corn. An experiment was designed to evaluate corn and forage sorghum in Western Kansas. The objective of this research was to evaluate the water use and growth characteristics of irrigated and dryland corn and forage sorghum. Field experiments were conducted at two locations (Tribune Experiment Station, Tribune and a cooperator’s field near Hoxie, Sheridan County Kansas) in 2011-2013. The experimental design at Tribune was a randomized complete block with four replications. A traditional replicated design was not possible at Hoxie. Multiple subsamples per plot were obtained and data are reported as means with standard errors. Corn and forage sorghum were grown under both dryland and fully irrigated conditions at both locations. Neutron access tubes were installed to monitor soil water. Aboveground biomass, intercepted solar radiation and volumetric soil water content were recorded at 5 sampling dates each growing season. Water use was similar between irrigated corn and forage sorghum. There were differences in biomass from year to year between the irrigated crops. Dryland water use was similar between the two crops and also had differences in biomass from year to year. Yields were significantly lower than average for all crops in 2012 due to drought conditions. Solar radiation interception correlated with aboveground biomass measurements. Aboveground biomass from the forage sorghum and corn was ensiled both years and analyzed for nutrient composition. This research suggests that forage sorghum silage may be an acceptable replacement for corn silage in areas with reduced irrigation capacities.
2

Groundwater elevation estimation model in the sloping Ogallala aquifer

Mzava, Philip G. January 1900 (has links)
Master of Science / Department of Civil Engineering / David R. Steward / A one-dimensional model was developed to study the flow of groundwater in the sloping Ogallala Aquifer at a steady state during predevelopment condition. The sloping base was approximated using a stepping base model. GIS applications were applied during data collection and preparation, and later during interpretation of model results. Analytical and numerical methods were employed in the development of this model which was used to try to understand long-term water balance in the study region. The conservation of mass was achieved by balancing groundwater input, output, and storage; this led to understanding the interactions of groundwater and surface water in the predevelopment conditions. The study resulted in identification of where natural discharge from groundwater to surface water occurred, and the quantity of these flows was obtained. The Ogallala Aquifer is thick in the south western part of Kansas, this region had an average saturated thickness of 100m during predevelopment conditions. The model found that groundwater flowed at a discharge per width of approximately 17 m[superscript]2/d in this region. The aquifer thickness tends to gradually decrease from west to east and from south to north. The northern part had an average saturated thickness of 40m during predevelopment conditions; the model found that groundwater flowed at a discharge per width of approximately 3 m[superscript]2/d in this region. It was also found that groundwater leaves the Ogallala Aquifer on the eastern side with discharge per width between 0-3 m[superscript]2/d. The discharge from groundwater to surface water was summed over contributing areas to river basins. The discharge to streams necessary to satisfy long-term conservation of mass computed by the model showed that Cimarron River has total baseflow of about 5.5 m[superscript]3/s; this was found to be almost 100% of the total streamflow recorded during predevelopment conditions. The Arkansas River was found to have total baseflow of about 0.97 m[superscript]3/s, which is approximately 14.3% of the total streamflow recorded during predevelopment conditions. The Smoky Hill River was found to have total baseflow of about 1.7 m[superscript]3/s, which is approximately 73.9% of the total streamflow recorded during predevelopment conditions. The Solomon River was found to have total baseflow of about 0.95 m[superscript]3/s, which is approximately 41.1% of the total streamflow recorded during predevelopment conditions. The Saline River was found to have total baseflow of about 0.25 m[superscript]3/s, which is approximately 62.5% of the total streamflow recorded during predevelopment conditions. The Republican and Pawnee River was found to have total baseflow of about 0.38 m[superscript]3/s and 0.22 m[superscript]3/s, which is approximately 18.5% and 12.6% of the total streamflow in the predevelopment conditions respectively. The model was found to be always within -16 to +12 meters between observed values and the model results, with an average value of 0.15m and a root mean square error of 1.98m. Results from this study can be used to advance this study to the next level by making a transient model that could be used as a predictive tool for groundwater response to water use in the study region.
3

The effects of financial incentives on groundwater use for irrigation in Western Kansas

Husung, Sabine January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries / Department: Economics.
4

Utilization of a boosted regression tree framework for prediction of dissolved phosphorus concentrations throughout the High Plains aquifer region

Temple, Jeffrey M 09 August 2022 (has links) (PDF)
Groundwater-derived phosphorus has often been dismissed as a significant contributor towards surface water eutrophication, however, this dismissal is unwarranted, making the quantification of phosphorus concentrations in groundwater systems immensely important. Machine learning models have been employed to quantify the concentrations of various contaminants in groundwater, but to our best knowledge have never been used for the quantification of groundwater phosphorus. The goal of this research was to use a boosted regression tree framework to produce the first believed machine learning model of phosphorus variability in groundwater, with the High Plains aquifer serving as the study area. Results display a boosted regression tree model that was not capable of explaining and predicting the statistical variance of phosphorus throughout the aquifer under standard conditions, however important variable correlation data that can potentially be incorporated into future studies that aim to further understand phosphorus dynamics in groundwater was obtained from this research.
5

The water of life: social and economic change in Haskell County, Kansas

Summers, Carrie M. January 1900 (has links)
Master of Arts / Department of Sociology, Anthropology, and Social Work / Laszlo Kulcsar / Environmental, economic and social conditions have changed drastically throughout Great Plains farming communities. In Southwest Kansas, the Ogallala Aquifer supports extensive agricultural industries and family farms through hyper-extraction of groundwater resources. Capitalistic ventures in farming have led to socials changes like declining community populations, out-migration of youth and family farm transformations. The relationship between environmental change, economic development and social changes is explored through a case study of Haskell County Kansas. Interviews were conducted to understand residents' perspectives of declining environmental resources available to achieve continued economic development by way of family farming. Residents also explain social changes that have resulted from evolving economic conditions and increasing use of groundwater resources.
6

Reading the public comment : the keystone XL pipeline and future of environmental writing

Siegel, Eric Mitchell 01 May 2014 (has links)
In the lead up to the 2011 official U.S. State Department decision on the proposed Keystone XL pipeline--running from the Alberta, Canada Tar Sands to the Gulf of Mexico--the Department held nine public meetings in Fall 2011 in the six U.S. states through which the proposed Keystone XL pipeline project would pass (the Department rejected the proposal; however, a new proposal is under consideration as of this writing). The transcripts of these public meetings are publicly accessible. Understanding the pipeline as a project of trans-national trade and the global circulation of petrochemicals--including global emissions of carbon dioxide--this paper hones in on one region within one U.S. state: the Nebraskan Sandhills, a cattle ranching region of grass-stabilized sand dunes and inter-dunal valleys stretching 20,000-square miles across the north-central part of the state, under which rests a vast hydrological network, including the largest freshwater aquifer in the world - the Ogallala Aquifer. This essay argues that we can read the Public Comments as a form of poetic expression, paying attention to the ways the State Department transcription process formatted the oral testimonies into an "official" and sanctioned public document -- instituting line-breaks and other syntactical procedures. Using the tools of literary-critical analysis, this paper makes a case that we can read the Comments as a form of documentary poetry - in the tradition of such American modernist poets as Charles Reznikoff, Muriel Rukeyser, and George Oppen - that explore ecological questions while experimenting with lyric structures. The Comments reveal competing environmental stakeholders' stances - on such topics as Prairie systems ecology and the neoliberal economics of private-public capital markets. In doing so, they subsequently express citizens' various understandings of themselves in relation to landscape, ecology, technology, and geo-politics.
7

Three Essays on Climate Change Impacts, Adaptation and Mitigation in Agriculture

Wang, Wei Wei 2012 August 1900 (has links)
This dissertation investigates three economic aspects of the climate change issue: optimal allocation of investment between adaptation and mitigation, impacts on a ground water dependent regional agricultural economy and effects on global food insecurity. This is done in three essays by applying mathematical programming. In the first essay, a modeling study is done on optimal temporal investment between climate change adaptation and mitigation considering their relative contributions to damage reduction and diversion of funds from consumption and other investments. To conduct this research, we extend the widely used Integrated Assessment Model?DICE (Dynamic Integrated Climate Economy) adding improved adaptation modeling. The model results suggest that the joint implementation of adaptation and mitigation is welfare improving with a greater immediate role for adaptation. In the second essay, the research focuses on the ground water dependent agricultural economy in the Texas High Plains Region. A regionally detailed dynamic land allocation model is developed and applied for studying interrelationships between limited natural resources (e.g. land and groundwater), climate change, bioenergy demands and agricultural production. We find out that the effect varies regionally across hydrologically heterogeneous regions. Also, water availability has a substantial impact on feedstock mix. In terms of biofuel feedstock production, the model results show that limited water resource cannot sustain expanded corn-based ethanol production in the future. In the third essay, a Computable General Equilibrium (CGE) model is applied in an attempt to study potential impacts of climate change on global food insecurity. Our results show that climate change alters the number of food insecure people in a regionally different fashion over time. In general, the largest increase of additional food insecure population relative to the reference case (no climate change) is found in Africa and South Asia, while most of developed countries will benefit from climate change with a reduced proportion of food insecure population. In general, climate change affects world agricultural production and food security. Integrated adaptation and mitigation strategy is more effective in reducing climate change damages. However, there are synergies/trade-offs between these two options, particularly in regions with limited natural resources.
8

Effects of high commodity prices on western Kansas crop patterns and the Ogallala aquifer

Clark, Matthew Ken January 1900 (has links)
Masters of Science / Department of Agricultural Economics / Jeffrey M. Peterson / The expansion of the biofuels industry, world demand, and various other factors are having a historic impact on the price of grains. These high prices have been creating a large increase in production of many water intensive crops such as corn. As corn is among the most input-intensive crops, this extra production has raised concerns about environmental impacts and pressures on water resources in particular. While water quality has been a longstanding concern in the cornbelt, much of the new production is in nontraditional corn regions including the southeast, the High Plains, and the western states. In these areas, there is mounting concern over depletion of already stressed water supplies. In the High Plains, the chief water source is the Ogallala aquifer, one of the largest water resources in the world that underlies eight states from South Dakota to Texas. The Ogallala has enabled many agricultural industries, such as irrigated crops, cattle feeding, and meat processing, to establish themselves in areas that would not be possible otherwise. A consequence is that the economy of this region has become dependent on groundwater availability. Continued overdrafts of the aquifer have caused a long-term drop in water levels and some areas have now reached effective depletion. This thesis seeks to estimate the impact of the rising commodity prices on groundwater consumption and cropping patterns in the Kansas portion of the Ogallala. The economy of this region is particularly dependent on water and irrigated crops, with more than 3 million head of feeder cattle and irrigated crop revenues exceeding $600 million annually. Sheridan (northwestern Kansas), Seward (southwestern Kansas), and Scott (west central Kansas) counties have been selected as representative case study regions. These counties have a wide range of aquifer levels with Seward having an abundant supply, Sheridan an intermediate supply, and Scott nearing effective depletion. Cropping patterns in these counties are typical of the western Kansas region, with most irrigated acreage being planted to corn and with dominant nonirrigated rotations of wheat-fallow and wheat-sorghum-fallow. A Positive Mathematical Programming (PMP) model was developed and calibrated to land- and water-use data in the case counties for a base period of 1999-2003. The PMP approach produces a constrained nonlinear optimization model that mimics the land- and water- allocation decision facing producers each year. The choice variables in the model are the acreages planted to each of the major crops and the water use by crop. The model was run for each of the case counties. The PMP calibration procedure ensures that the model solutions fall within a small tolerance of the base period observations. Once calibrated, the models were executed to simulate the impacts of the emerging energy demand for crops over a 60-year period. After the baseline projections were found, the model was then run under increased crop prices that reflect the higher prices observed in 2006 and after. The thesis found that under the high price scenario, both irrigated crop production and water application per acre increased significantly during the early years of the simulated period in all modeled counties. The size of the increases depended on the amount of original water available in each county. The increases generally diminished in magnitude toward the end of the simulation period, but led to smaller ending levels of saturated thickness as compared to the base price in all counties. Finally, in two of the three counties, it was observed that initial increases in irrigated crop acres and water application forces a decline in the aquifer such that less water can be applied per acre in the final years of the simulation. This suggests that high commodity prices forces a higher emphasis on early production levels than later production levels. Additionally, the higher prices have a significant effect on the rate of decline of the Ogallala aquifer.
9

Improving irrigated cropping systems on the high plains using crop simulation models

Pachta, Christopher James January 1900 (has links)
Master of Science / Department of Agronomy / Scott A. Staggenborg / Irrigated cropping systems on the High Plains are dominated by water intensive continuous corn (Zea mays L.) production, which along with other factors has caused a decline in the Ogallala aquifer. Potentially demand for water from the aquifer could be decreased by including drought tolerant crops, like grain sorghum (Sorghum bicolor L.) and cotton (Gossypium hirsutum L.), in the cropping systems. This study calibrated the CERES-Maize, CERES-Sorghum, and CROPGRO-Cotton models for the High Plains and studied the simulated effects of different irrigation amounts and initial soil water contents on corn, cotton, and grain sorghum. Input files for calibration were created from irrigated and dryland research plots across Kansas. Information was collected on: soil physical properties, dry matter, leaf area, initial and final soil water content, management, and weather. CERES-Maize simulated grain yield, kernel number, ear number, and seed weight across the locations with root mean square errors (RMSE) of 2891 kg ha-1, 1283 kernels m-2, 1.6 ears m-2, and 38.02 mg kernel-1, respectively. CERES-Sorghum simulated grain yield, kernel number, head number, and seed weight with RMSEs of 2150 kg ha-1, 5755 kernels m-2, 0.13 heads m-2, and 4.51 mg kernel-1. CROPGRO-Cotton simulated lint yield and boll number with RMSEs of 487 kg ha-1 and 25.97 bolls m-2. Simulations were also conducted with CERES-Maize, CERES-Sorghum, and CROPGRO-Cotton to evaluate the effects of irrigation amounts and initial soil water content on yield, evapotranspiration (ET), water use efficiency (WUE), available soil water at maturity, and gross income per hectare. Simulations used weather data from Garden City, KS from 1961 to 1999. Irrigation amounts were different for all variables for corn and grain sorghum. For cotton, yield, WUE, soil water, and gross income were not different between the top two irrigation amounts. For corn and grain sorghum, initial soil water content was only different at 50% plant available water. Initial soil water had no affect on cotton, except for ET at 50%. Simulations showed that cotton yields are similar at lower irrigation. Also, cropping systems that include cotton have the potential to reduce overall irrigation demand on the Ogallala aquifer, potentially prolonging the life of the aquifer.
10

Analytic element modeling of the High Plains Aquifer: non-linear model optimization using Levenberg-Marquardt and particle swarm algorithms

Allen, Andy January 1900 (has links)
Master of Science / Department of Civil Engineering / David R. Steward / Accurate modeling of the High Plains Aquifer depends on the availability of good data that represents and quantities properties and processes occurring within the aquifer. Thanks to many previous studies there is a wealth of good data available for the High Plains Aquifer but one key component, groundwater-surface water interaction locations and rates, is generally missing. Without these values accurate modeling of the High Plains Aquifer is very difficult to achieve. This thesis presents methods for simplifying the modeling of the High Plains Aquifer using a sloping base method and then applying mathematical optimization techniques to locate and quantify points of groundwater-surface water interaction. The High Plains Aquifer has a base that slopes gently from west to east and is approximated using a one-dimensional stepping base model. The model was run under steady-state predevelopment conditions using readily available GIS data representing aquifer properties such as hydraulic conductivity, bedrock elevation, recharge, and the predevelopment water level. The Levenberg-Marquardt and particle swarm algorithms were implemented to minimize error in the model. The algorithms reduced model error by finding locations in the aquifer of potential groundwater-surface water interaction and then determining the rate of groundwater to surface water exchange at those points that allowed for the best match between the measured predevelopment water level and the simulated water level. Results from the model indicate that groundwater-surface water interaction plays an important role in the overall water balance in the High Plains Aquifer. Findings from the model show strong groundwater-surface water interaction occurring in the northern basin of the aquifer where the water table is relatively shallow and there are many surface water features. In the central and southern basins the interaction is primarily limited to river valleys. Most rivers have baseflow that is a net sink from groundwater.

Page generated in 0.05 seconds