• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using reclaimed water for golf course irrigation to improve water resource management in the Lower Arkansas River Basin

McCluskey, Kara M. January 1900 (has links)
Master of Science / Civil Engineering / David R. Steward / With an increasing population, municipalities in the United States are struggling to secure safe, reliable water sources for future water demands. Alternative water sources are being considered to improve the overall water management picture. Wastewater reuse, reusing wastewater effluent for beneficial purposes, is an alternative water source that is gaining popularity in the United States. In this study a theoretical framework was developed to enable a region to quickly assess the feasibility of reusing wastewater for irrigation needs. Three criteria were established for the framework; they are, regulations and guidelines for reuse, adequate flow ratio, and cost benefit analysis. As a region moves through the framework and criteria a list of feasible wastewater facilities and end users are established. A model was developed for the cost benefit analysis based on regional input. As regulatory frameworks and economic factors evolve over time the model can be updated to assess how these changes will affect water reuse in a region. The model will provide a useful tool for a region to integrate wastewater reuse into the water resource management process. The Lower Arkansas River Basin (LARK) was highlighted by the Kansas Water Office as a region that should investigate the role of reuse in water conservation. Results from this report indicate 963 million gallons per year (MG/yr) of wastewater effluent could feasibly be used to irrigate 9 hole and 18 hole golf courses in the region. The results determined that any 18 hole golf course within a 15.9 mile radius of a wastewater treatment facility in the LARK could payback the capital costs for wastewater reuse within 10 years. This information is a useful tool for the region to start the discussion for implementing wastewater reuse in the region. The results from this report indicate wastewater reuse for golf course irrigation is economically feasible in the LARK. Establishing a safe reliable water source for the future is paramount to the future of Kansas. Future research is needed to determine how the wastewater diversion affects the environmental balance of the permitted discharge location.
2

Evaluating the aesthetic and amenity performance of vegetated stormwater management systems

Buffington, Jared January 1900 (has links)
Master of Landscape Architecture / Department of Landscape Architecture/Regional and Community Planning / Timothy Keane / Stormwater management within the urban context has evolved over time. This evolution has been categorized by five paradigm shifts (Novotny, Ahern, & Brown, 2010). The current paradigm of stormwater management utilizes hard conveyance and treatment infrastructure designed mainly to provide protection for people from typical 1-5 year frequency storms. Consequently, this infrastructure is sometimes unable to deal with larger sized, 50 to 100 year events which can have serious consequences. Manhattan, Kansas has suffered multiple flooding episodes of severe proportion in the past decade. The dilemma of flooding within the Wildcat Creek watershed is a direct example of the current paradigm of stormwater management. This once ecologically healthy corridor is fed by conveyance systems that do not address the hydrologic needs of the watershed; decreasing the possibility for infiltration and groundwater recharge. Vegetated stormwater management systems must be implemented to help increase infiltration and address flooding problems within the Wildcat Creek watershed. The aesthetic performance of designed landscapes has a tremendous effect on the appreciation and care given to them by the surrounding population (Gobster, Nassauer, Daniel, and Fry, 2007). Landscape architecture has the ability to aid in the visual appeal and ecological design of vegetated stormwater management systems (SMS) by utilizing existing frameworks that address aesthetic reaction of the outdoor environment (Kaplan, Kaplan, and Ryan, 1998). This document evaluates design alternatives of vegetated SMS in order to discern a set of variables that inform the relationship between each systems aesthetic and amenity performance and their ecosystem and hydrological performance. Identified variables are combined into a set of guidelines for achieving different levels, or patterns of aesthetic performance found within the Understanding and Exploration Framework et al. (Kaplan, Kaplan, and Ryan, 1998) and amenity performance listed by Echols and Pennypacker’s Amenity Goals et al. (2007) through vegetated SMS. These design guidelines illustrate how aesthetic theory can be applied through ecological systems in order to increase the coherence, legibility, complexity, and mystery (Kaplan & Kaplan, 1989) of existing sites. Creating spaces where ecological and socio-cultural activities can coexist addresses the local characteristics of aesthetics with the universal dilemma of stormwater management.
3

Modeling tools for ecohydrological characterization

Sinnathamby, Sumathy January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Stacy L. Hutchinson and Kyle R. Douglas-Mankin / Ecohydrology, a sub-discipline of hydrology, deals with the ecological impacts of and interactions with the hydrological cycle. Changes in hydrology of the Great Plains rivers, and their impacts on water quality, water resources, aquatic ecosystems, and fish species distributions have been documented. The major goal of this study was to develop and test methods to analyze watershed-level ecohydrological characteristics. The specific objectives were (a) to detect past temporal trends and spatial variability in hydrologic indices, (b) to evaluate the presence and/or extent of spatial and temporal relationships between climatic and ecohydrological variables and riverine historical data on fauna species density and distribution, and (c) to assess model calibration strategies for accurate ecohydrological indicator simulation. The Kansa River Basin (KRB), which has substantial land use, soil and climate variability, as well as variation in anthropogenic drivers (dams, diversions, reservoirs, etc.), was the focus of this study. Thirty eight hydrological indicators were generated using the indicators of hydrologic alterations software for 34 stations in the KRB using 50-year streamflow records and trend analysis using Mann-Kendall, Seasonal Kendall, and Sen’s slope estimator tests. Across the KRB a decreasing trend was evident for annual mean runoff, summer and autumn mean runoff, 30-day, 90-day minimum flows, and 1-day, 3-day, 7-day, 30-day and 90-day maximum flows. Most of the significant negative trends were observed in the High Plains ecoregion. Two hydrologic indicators, high-flow pulse count and mean summer streamflow, were significantly different in streams that lost two indicator fish species, indicating that changes in streamflow have altered the fish habitat of this region. The Soil and Water Assessment Tool (SWAT) biophysical model calibrated using a multi-objective framework (multi-site, multivariable and multi-criteria) was able to simulate most of the ecohydrological indicators at different hydrological conditions and scales. The SWAT model provided robust performance in simulating high-flow-rate ecohydrologic indicators. However ecohydrologic indicators performance was highly dependent on the level of calibration and parameterization. The effect of calibration and parameterization on ecohydrologic indicators performance varied between watersheds and among subwatersheds.
4

Characterization of wet and dry deposition to the nitrogen sensitive alpine ecosystems in the Colorado Rocky Mountains

Oldani, Kaley Michelle January 1900 (has links)
Master of Science / Department of Civil Engineering / Natalie Mladenov / The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, and organic carbon (OC) is the main energy source for heterotrophic microbial activity and sustenance of life. Atmospheric deposition can contain high amounts of OC. Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric OC load. In this stage of the research we evaluated seasonal trends and annual loadings in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of wet deposition and dry deposition in an alpine environment, at Niwot Ridge in the Rocky Mountains of Colorado to better understand the sources and chemical characteristics of atmospheric deposition. Dry deposition was found to be an important source of OC to the alpine. Wet deposition contributed substantially greater amounts of dissolved ammonium, nitrate, and sulfate. There were also positive relationships between dissolved organic carbon (DOC) concentrations and ammonium, nitrate and sulfate concentrations in wet deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components in atmospheric samples that are different from aquatic dissolved organic matter (DOM). Finally, the quality of atmospheric organic compounds reflects photodegradation during transport through the atmosphere. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate from alpine watersheds.
5

Redesigning River des Peres: to improve, protect, and maintain

Denney, Anne January 1900 (has links)
Master of Landscape Architecture / Department of Landscape Architecture, Regional and Community Planning / Tim Keane / During a 75-year building boom starting in the early to mid 1900's we built most of the stormwater and sewage infrastructure that sustains us today. As these infrastructural systems begin to meet their life expectancy, and with our cities being impacted by flooding, rapid urbanization, and water quality concerns there is a need for designers to begin rethinking these infrastructural systems. With rapid urbanization cities are seeing increased peak flow discharge volumes within their river systems and combined sewer overflow occurrences. The River des Peres located in the City and County of Saint Louis, Missouri, is an urban waterway that is affecting the natural ecosystem and community well-being. The main stem of the River des Peres is a heavily degraded concrete trapezoidal channel that in 1988 became a National Historic Civil Engineering landmark for its sewerage and drainage works. Which leads to the question of why a historic civil engineering landmark, such as the River des Peres, is such a wreck today? In compliance with the Clean Water Act the Metropolitan St. Louis Sewer District is proposing to implement enhanced green infrastructure and stormwater/sewer storage tanks to reduce the amount of Combined Sewer Overflow (CSO) occurrences in the River des Peres watershed. However, through review of literature, site inventory and analysis, a watershed stormwater BMP plan, and corresponding site design developments it has been found that return frequency flow can be reduced as much as 56% in the watershed, reducing the need for storage tanks and reducing CSO occurrences. Through the incorporation of stormwater best management practices (BMPs) the River des Peres responds to recurrence flow, wildlife habitat, and to the well-being of the community.
6

Assessing impacts of climate change on Kansas water resources: rainfall trends and risk analysis of water control structures

Rahmani, Vahid January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Stacy L. Hutchinson / Precipitation impacts hydrologic structures, agricultural production, water resources management, and recreational activities, all of which significantly affect a state’s economy. Water control structure design is based on the maximum runoff rate resulting from storms with a specific return period and duration. The Rainfall Frequency Atlas (National Weather Service Technical Paper 40, 1961) (TP-40) provided statistical rainfall analysis as the basis for hydrologic structure design until the information was updated for Kansas in February 2013 (National Oceanic and Atmospheric Administration Atlas 14, volume 8) (Atlas-14). With growing concern about the effects of global climate change and predictions of more precipitation and extreme weather events, it is necessary to explore rainfall distribution patterns using the most current and complete data available. In this work, the changes in rainfall patterns were studied using the daily rainfall data from 23 stations in Kansas and 15 stations from adjacent states with daily rainfall data of 1890 through 2012. Analysis showed an increase in extreme precipitation events in Kansas with increase in magnitude from the northwest to southeast part of the state. A comparison of results of the TP-40 analysis to period 1980–2009, showed that approximately 84% of the state had an increase in short-term rainfall event magnitudes. In addition, trend analyzes on the total annual rainfall indicated a gradual increase at 21 out of 23 stations, including eight statistically significant trends. A change-point analysis detected a significant sudden change at twelve stations as early as 1940 and as recently as 1980. The increasing trend, particularly after the significant change-points, is useful in updating water management plans and can assist with agricultural production decisions such as crop selection and new plant variety development. A comparison between 10-yr, 24-hr storms from TP-40 and Atlas-14 indicated a change of -12% to 5% in Kansas. However, the number of exceedances from the 10-yr, 1-, 2-, 3-, 4-, 7-, and 10-day storms demonstrated a tendency towards more exceedances, particularly in the last five decades. Results of this study are useful for hydrologic structure design and water resources management in order to prevent accepting additional risk of failure because of the current changing climate.
7

Analytic element modeling of the High Plains Aquifer: non-linear model optimization using Levenberg-Marquardt and particle swarm algorithms

Allen, Andy January 1900 (has links)
Master of Science / Department of Civil Engineering / David R. Steward / Accurate modeling of the High Plains Aquifer depends on the availability of good data that represents and quantities properties and processes occurring within the aquifer. Thanks to many previous studies there is a wealth of good data available for the High Plains Aquifer but one key component, groundwater-surface water interaction locations and rates, is generally missing. Without these values accurate modeling of the High Plains Aquifer is very difficult to achieve. This thesis presents methods for simplifying the modeling of the High Plains Aquifer using a sloping base method and then applying mathematical optimization techniques to locate and quantify points of groundwater-surface water interaction. The High Plains Aquifer has a base that slopes gently from west to east and is approximated using a one-dimensional stepping base model. The model was run under steady-state predevelopment conditions using readily available GIS data representing aquifer properties such as hydraulic conductivity, bedrock elevation, recharge, and the predevelopment water level. The Levenberg-Marquardt and particle swarm algorithms were implemented to minimize error in the model. The algorithms reduced model error by finding locations in the aquifer of potential groundwater-surface water interaction and then determining the rate of groundwater to surface water exchange at those points that allowed for the best match between the measured predevelopment water level and the simulated water level. Results from the model indicate that groundwater-surface water interaction plays an important role in the overall water balance in the High Plains Aquifer. Findings from the model show strong groundwater-surface water interaction occurring in the northern basin of the aquifer where the water table is relatively shallow and there are many surface water features. In the central and southern basins the interaction is primarily limited to river valleys. Most rivers have baseflow that is a net sink from groundwater.
8

GIS-based coupled cellular automaton model to allocate irrigated agriculture land use in the High Plains Aquifer Region

Wang, Peiwen January 1900 (has links)
Master of Landscape Architecture / Department of Landscape Architecture and Regional and Community Planning / Eric A. Bernard / The Kansas High Plains region is a key global agricultural production center (U.S. G.S, 2009). The High Plains physiography is ideal agricultural production landscape except for the semi-arid climate. Consequently, farmers mine vast groundwater resources from the High Plains Ogallala Aquifer formations to augment precipitation for crop production. Growing global population, current policy and subsidy programs, declining aquifer levels coupled with regional climatic changes call into question both short-term and long-term resilience of this agrarian landscape and food and water security. This project proposes a means to simulate future irrigated agriculture land use and crop cover patterns in the Kansas High Plains Aquifer region based on coupled modeling results from ongoing research at Kansas State University. A Cellular Automata (CA) modeling framework is used to simulate potential land use distribution, based on coupled modeling results from groundwater, economic, and crop models. The CA approach considers existing infrastructure resources, industrial and commercial systems, existing land use patterns, and suitability modeling results for agricultural production. The results of the distribution of irrigated land produced from the CA model provide necessary variable inputs for the next temporal coupled modeling iteration. For example, the groundwater model estimates water availability in saturated thickness and depth to water. The economic model projects which crops will be grown based on water availability and commodity prices at a county scale. The crop model estimates potential yield of a crop under specific soil, climate and growing conditions which further informs the economic model providing an estimate of profit, which informs regional economic and population models. Integrating the CA model into the coupled modeling system provides a key linkage to simulate spatial patterns of irrigated land use and crop type land cover based on coupled model results. Implementing the CA model in GIS offers visualization of coupled model components and results as well as the CA model land use and land cover. The project outcome hopes to afford decision-makers, including farmers, the ability to use the actual landscape data and the developed coupled modeling framework to strategically inform decisions with long-term resiliency.
9

PC-SWMM modeling of policy changes on suburban watersheds in Johnson County, Kansas

Brady, Grant January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Stacy Hutchinson / Urban areas have traditionally been managed as separate entities from the natural environment. Recently, urban planners have been interested in reconnecting these areas back to the biosphere to capitalize on ecosystem services restoring damaged hydrologic processes. This study focuses on suburban Johnson County, KS (part of the Greater Kansas City area), which has 62 USEPA 303(d) listed “impaired” or “potentially impaired” waterbodies. Previous studies show that watersheds crisscrossed by multiple politically boundaries see increases in water quantity and decreases in water quality. Using a multi-watershed, multi-city spanning entity like a school district, it is investigated how stormwater best management practices (BMPs) employed over a large entity can help undo the negative effects of watershed political fragmentation. BMP modeling includes simulating grassroots and planning policy change movements across three target watersheds using PC-SWMM watershed model. The grassroots simulation models rain barrels at single family homes and an extended dry detention basin (EDDB) at schools. Planning policy simulation models 10% and 20% reductions in impervious roads and parking lots in accordance to EPA Smart Growth practices. Resulting, it was seen that all three of these BMPs saw the greatest improvements from current conditions at low precipitation events. Ranking from least to most effective across the outlet’s average flow, maximum flow, and total volume and supporting watershed infiltration, surface runoff, and surface storage are as follows: rain barrels + EDDB, 10% reduced, and 20% reduced impervious simulations. All three stormwater BMPs help demonstrate how grassroots movements and planning polices changes can positively impact regional waterbodies in this maturely suburbanized region.
10

The succession of a contaminated floodplain: reclaiming the West Bottoms

King, Jessica January 1900 (has links)
Master of Landscape Architecture or Regional and Community Planning / Department of Landscape Architecture/Regional and Community Planning / Timothy Keane / Kansas City is expecting a 25% growth in population by 2050. This design proposal promotes West Bottoms as a potential area to house some of the new population, and more importantly supply a live and work community for these people. West Bottoms is also home to major industry in Kansas City as well as an up and coming art culture. West Bottoms has great potential for a community that allows the existing and new population to be a part of a live-work-play community with the vacancies in the area. The projected population growth is expected to promote sprawl, further increasing the average driving time to the city. West Bottoms currently has few connections to the downtown and offers few reasons to come to the area. These connections are mainly major bridges or highways. Another issue West Bottoms faces is flooding problems from OK Creek and Turkey Creek, which lead into the Kansas and Missouri Rivers. Finally, post and present industrial soil contamination threatens the groundwater. When mixed with flooding concerns, this contamination is potentially harmful for the health of downstream cities. Drawing inspiration from travels, Kansas City charm, plants, art, and water storage, case studies were researched. Themes from each case study were quantified. These themes paired with inventory and analysis of the West Bottoms provided the basis for the design proposed here. The successional design of the area will progress from a contaminated landscape to a landscape that holds floodwater. The final design holds all of the stormwater from the 100 year 1, 2, 3, 6, 12, and 24 hour rain events. The final design incorporates areas of learning, a variety of paths and seating, a live-work-play community, clean and creative industry, and an art culture that sustains the excitement for the timeline of succession. Overtime this landscape will evolve into a new destination for Kansas City using an integrated solution remediating the soil and holding flood waters as an amenity for the new population.

Page generated in 0.1118 seconds