• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 376
  • 131
  • 6
  • Tagged with
  • 514
  • 168
  • 146
  • 130
  • 59
  • 50
  • 40
  • 39
  • 37
  • 37
  • 36
  • 33
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Estimation of remaining service life of flexible pavements from surface deflections

Gedafa, Daba Shabara January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Mustaque A. Hossain / Remaining service life (RSL) has been defined as the anticipated number of years that a pavement will be functionally and structurally acceptable with only routine maintenance. The Kansas Department of Transportation (KDOT) has a comprehensive pavement management system, network optimization system (NOS), which uses the RSL concept. In support of NOS, annual condition surveys are conducted on the state highway system. Currently KDOT uses an empirical equation to compute RSL of flexible pavements based on surface condition and deflection from the last sensor of a falling-weight deflectometer (FWD). Due to limited resources and large size, annual network-level structural data collection at the same rate as the project level is impractical. A rolling-wheel deflectometer (RWD), which measures surface deflections at highway speed, is an alternate and fast method of pavement-deflection testing for network-level data collection. Thus, a model that can calculate RSL in terms of FWD first sensor/center deflection (the only deflection measured by RWD) is desired for NOS. In this study, RWD deflection data was collected under an 18-kip axle load at highway speed on non-Interstate highways in northeast Kansas in July 2006. FWD deflection data, collected with a Dynatest 8000 FWD on the KDOT network from 1998 to 2006, were reduced to mile-long data to match the condition survey data collected annually for NOS. Normalized and temperature-corrected FWD and RWD center deflections and corresponding effective structural numbers (SNeff) were compared. A nonlinear regression procedure in Statistical Analysis Software (SAS) and Solver in Microsoft Excel were used to develop the models in this study. Results showed that FWD and RWD center deflections and corresponding SNeff are statistically similar. Temperature-correction factors have significant influence on these variables. FWD data analysis on the study sections showed that average structural condition of pavements of the KDOT non-Interstate network did not change significantly over the last four years. Thus, network-level deflection data can be collected at four-year intervals when there is no major structural improvement. Results also showed that sigmoimal relationship exists between RSL and center deflection. Sigmoidal RSL models have very good fits and can be used to predict RSL based on center deflection from FWD or RWD. Sigmoidal equivalent fatigue crack-models have also shown good fits, but with some scatter that can be attributed to the nature and quality of the data used to develop these models. Predicted and observed equivalent transverse-crack values do not match very well, though the difference in magnitude is insignificant for all practical purposes.
262

Acoustic emission monitoring of fiber reinforced bridge panels

Flannigan, James Christopher January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Youqi Wang / Two fiber reinforced polymer (FRP) bridge deck specimens were analyzed by means of acoustic emission (AE) monitoring during a series of loading cycles performed at various locations on the composite sandwich panels' surfaces. These panels were subjected to loads that were intended to test their structural response and characteristics without exposing them to a failure scenario. This allowed the sensors to record multiple data sets without fear of having to be placed on multiple panels that could have various characteristics that alter the signals recorded. The objective throughout the analysis ias to determine how the acoustic signals respond to loading cycles and various events can affect the acoustical data. In the process of performing this examination several steps were taken including threshold application, data collection, and sensor location analysis. The thresholds are important for lowering the size of the files containing the data, while keeping important information that could determine structurally significant information. Equally important is figuring out where and how the sensors should be placed on the panels in the first place in relation to other sensors, panel features and supporting beams. The data was subjected to analysis involving the response to applied loads, joint effects and failure analysis. Using previously developed techniques the information gathered was also analyzed in terms of what type of failure could be occurring within the structure itself. This somewhat aided in the analysis after an unplanned failure event occurred to determine what cause or causes might have lead to the occurrence. The basic analyses were separated into four sets, starting with the basic analysis to determine basic correlations to the loads applied. This was followed by joint and sensor location analyses, both of which took place using a two panel setup. The last set was created upon matrix failure of the panel and the subsequent investigation.
263

The feasibility of modern technologies for reinforced concrete containment structures of nuclear power plants

Czerniewski, Sarah January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / This report explores the requirements for the design and analysis of concrete containment and shows how newer material technologies such as self-consolidating concrete (SCC) and fiber reinforcement could assist in the constructability and durability of new nuclear power plant facilities. SCC for example, enables concrete to flow in the forms around the reinforcement and provides a more uniform adhesion with the reinforcement. Additionally, fiber reinforcement in the concrete mix increases bonding capability, thus making the concrete less likely to fracture. In particular, the ease of constructability benefits offshore floating nuclear power plants and preapproved modular power plants. To differentiate, the offshore plant would employ the assembly line to make all the plants the same while the modular plant, designed to be used anywhere, is not site specific and is typically smaller. Regarding research method, the report starts with the history of the nuclear industry in the United States, including the last nuclear power plant constructed, clarifying that nuclear energy was first harnessed for a submarine propulsion system before being employed to generate electricity. After these early endeavors, two major accidents, Three Mile Island (March 28, 1979) and Chernobyl (April 26, 1986), provided information regarding the lack of safety of nuclear power plant design and operation. Since the containment building is the focus of this report, recognizing the loads and the load combinations for design was the next step in research. Following that, the next step was to determine the design considerations and analyze the containment structure. New material technologies clearly have opened the door to new construction techniques, and the combination of new materials and methods offers structural engineers opportunity to build inherently safer nuclear power plants.
264

Verification of mechanistic prediction models for permanent deformation in asphalt mixes using accelerated pavement testing

Onyango, Mbakisya A. January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Stefan A. Romanoschi / Permanent deformation (rutting) is the most critical load-associated distress that develops on asphalt pavements significantly affecting their performance. Past research work focused on estimating permanent deformation of asphalt mixes using empirical prediction models or prediction models based on linear elastic material models. In recent years, mechanistic and mechanistic-empirical prediction models have been developed to take into account the behavior of asphalt material (viscoelastic, viscoplastic or elasto-visco-plastic). This research project aims to evaluate existing mechanistic models that predict permanent deformation (rutting) in asphalt mixes by comparing computed permanent deformation to that measured in a full-scale accelerated pavement test. Six pavement sections were constructed in the Civil Infrastructure Systems Laboratory (CISL) of Kansas State University with six different asphalt mixes. The sections were loaded with up to 700,000 load repetitions of a 22,000lb single axle. The transverse profiles at the pavement surface were measured periodically. For material characterization, asphalt mix samples fabricated in the laboratory, were subjected to dynamic modulus (|E*|), static creep - flow time (Ft), dynamic creep - flow number (Fn), triaxial and uniaxial strength tests, repetitive shear at constant height (RSCH) and frequency sweep at constant height (FSCH). The finite element software, Abaqus, was used to simulate and evaluate four permanent deformation prediction models, which are: creep model, elasto-visco-plastic model, viscoelastic model and Drucker-Prager model. The predicted permanent deformation was then compared to permanent deformation measured in CISL for the six of asphalt pavement sections. It was found that, with some improvements, creep and elasto-visco-plastic models could be used to predict permanent deformation in asphalt mixes. The viscoelastic model greatly under-predict permanent deformation, and the Drucker-Prager model with hardening criteria over predicts permanent deformation as compared to values measured in CISL.
265

Assessment of general aviation airport pavement conditions in Kansas

Villarreal, Jose A. January 1900 (has links)
Master of Science / Department of Civil Engineering / Mustaque A. Hossain / The objective of this research project was to assess the condition of general aviation airport pavements in Kansas. The study was also intended to form the basis for a pavement management system (PMS). A total of 137 runways from 107 airports across the state were surveyed. MicroPAVER, a PMS system developed by the U.S. Army Corps of Engineers, was selected as the platform for the PMS. An inventory database was developed for all runways in the network. Information about the construction and maintenance history was entered into the MicroPAVER database. On-site surveys were conducted between the months of May and July of 2008 to assess pavement conditions in terms of the Pavement Condition Index (PCI), following the methodology outlined by ASTM D 5340-04 and adopted by the Federal Aviation Administration (FAA). Approximately 68% of the sections surveyed were in “good” to “satisfactory” condition. Almost one-third of the network can be rated as “good.” About 21% of the sections studied were in “fair” condition. Overall, the condition of the network can be rated as “satisfactory.” A condition prediction curve was developed for each of the two different types of surfaces. From the prediction curves created using MicroPAVER, it was estimated that the number of branches rated as “good” could decrease by 50% by 2010. As much as 44% of the network could have a rating of “fair” by 2013 if the sections receive only routine maintenance. Two budget scenario comparison reports developed show that the 108 runways of the 78 general aviation airports eligible for FAA funding in Kansas could be brought to a “satisfactory” rating or above (i.e. average PCI ≥ 70) by spending approximately $15 million on average per year for the next five years.
266

Factors affecting fatal crash involvement of older drivers in the U.S.

Rallabandi, Abhiteja January 1900 (has links)
Master of Science / Department of Civil Engineering / Sunanda Dissanayake / Rapid increases are estimated in the percentage of elderly among the U.S. population starting in 2010. A majority of the older Americans depend on automobiles to meet their transportation needs either because of lack of public transportation or by choice. Ninety percent of total trips made by the elderly are by personal vehicle and seventy percent of this number involves the elderly driving the vehicles. However due to the aging process, older drivers experience a natural decline in sensory, cognitive, and other mental and physical capabilities as compared to younger drivers. This situation, combined with an imperfect highway infrastructure is making older drivers one of the most critical groups in terms of highway safety, thus demanding safer driving conditions. Safety concern for older drivers arises when the fatality rate per mile driven is considered, as exposure is one of the crucial factors contributing to increased fatality risk of older drivers. Hence, exposure reported in Billion Vehicle Miles Traveled (BVMT) was considered for this study. Crash data and exposure data were used to compute the fatality rates. Sources for this data are the Fatality Analysis Reporting System (FARS) and National Household Travel Survey (NHTS). A basic characteristics study was completed to compare the fatality risk of younger (16-24 yrs), middle-aged (25-64 yrs), and older drivers (65+ yrs). Crash details were screened to study the characteristics of older drivers involved in fatal crashes. Risk for older drivers due to other involved drivers of all ages divided into groups was studied to understand their distribution. A number of statistical methods like the chi-square test of independence, odds ratio and double paired comparison estimates were applied to study contributing factors of older driver’s increased fatal crash involvement. Results from the characteristics study for the elderly indicate that a majority of fatal crashes occur under daylight conditions with relatively higher seatbelt usage and non-alcoholic driving on straight level roads, which are generally considered as safer driving conditions. Other factors studied include vehicle-related variables like body type; manner of collision; roadway-related variables like roadway function class, month of the crash, and day of the week; and driver-related variables like race. Roadway functional class, vehicle body type, travel speed, number of drunk drivers, and the month in which the fatality occurred were found to have strong correlation with age of the older driver. Results from paired comparisons were used to estimate the fatality risk of older occupants as drivers and passengers under two different conditions considered simultaneously. Older drivers were found to have more fatality risk compared to older passengers. Recommended measures are also discussed to enhance older driver safety in the U.S.
267

Comparison of structural steel lateral force resisting systems for a theoretical hospital grid system

Buell, Grant January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / In 2006, a research project was being carried out by architects at architecture/engineering firm Cannon Design involving an optimum bay size for a hospital. RISA computer modeling was used to explore a set of lateral force resisting system (LFRS) options for a building based on this optimum bay size and importance category. The structural material was first narrowed down to steel, and then moment frames and braced frames are examined. The LFRS was narrowed down to braced frames, discarding moment frames due to their inordinate story drift. Of the different types of braced frames, the study further narrowed the LFRS system to chevron braced frames. Then the precise arrangement of braces for a particular building size using this bay system was examined. The steel material cost of the final system was compared to a system that only included members sized for gravity loads to demonstrate the rough amount of cost that a lateral system can add to a building.
268

Deflection gap study for cold‐formed steel curtain wall systems

Monroy, Barbara L. January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Sutton F. Stephens / Cold‐formed steel has become a preferred building material for wall framing in many different types of structures. One of its main uses has been as non‐structural members in curtain wall assemblies of structural steel framed buildings. In an exterior wall application, the main purpose of the curtain wall is to transfer out of plane loads to the steel frame while not supporting any superimposed gravity loads. Therefore, when the curtain wall is in the plane of the structural steel frame, the vertical deflection of the spandrel beam directly above the wall must be known to provide the appropriate deflection gap between the beam and the curtain wall so that gravity loads are not transferred to the wall. Common practice is to size the gap for the deflection from 100% of the live load. In some cases, the deflection gap may be significant, and since this gap must also be provided in the exterior cladding of the wall, it creates a design issue for the architect. This report presents the results of an investigation into the feasibility of reducing the size of the deflection gap when the wall is located directly under the spandrel beam. In this study, analytical models were developed for common design situations of curtain walls constructed of cold‐formed steel studs in structural steel framed buildings. This study investigates two common stud heights combined with different floor live loads. Taking into account that wall studs have some available axial compressive strength, a procedure was developed to determine an appropriate reduction for the gap. Using an iterative process a relationship is made between the axial compressive strength of the stud and the amount of axial load the stud can support to establish a factor which gives the percentage the live load gap for 100% live load can be safely reduced by.
269

Elating building information modeling & architectural engineering curricula

Vogt, Blythe A. January 1900 (has links)
Architectural Engineering / Department of Architectural Engineering and Construction Science / David R. Fritchen / Building Information Modeling (BIM) has been touted by industry leaders, professional societies and trade articles as the next ‘big’ industry trend shaping the delivery of commercial construction by architects, engineers and construction managers. BIM delivery has been presently utilized by over half of polled industry partners. And, withstanding a separate technological programming breakthrough, BIM will likely sustain high levels of growth in implementation in industry with the rise of the next generation of design and construction professionals and building owners in the next 50 years, making BIM delivery the primary means of commercial construction document and project delivery. Due to this growth and publicity, universities around the USA have been highly encouraged to implement BIM into their educational curricula fabric of course work, placing an ever increasing emphasis on a BIM skill set for their graduates. Taken together, surveys of Architectural Engineering programs current and planned implementation of BIM, potential employers’ emphasis on recruiting graduates with BIM skills, reading and referencing of trade articles relating BIM to industry delivery trends, research on initial and sustained requirements and associated costs of hardware and software for universities - specifically Architectural Engineering Programs to include BIM in their curriculum, this collation of research and information will trend towards suggestions and conclusions related to BIM’s importance in Architectural Engineering curriculum of the present and future.
270

A study of the seismic response modification factor for log shear walls

Kessler, Samantha January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Sutton F. Stephens / Log construction is becoming increasingly popular throughout the U.S. Currently, seismic coefficients are not provided in model building codes for the design of the log shear walls as a lateral force resisting system for seismic forces. Current design practice is to use a response modification coefficient, R, of around 4.5. Several tests by other researchers on log shear walls showed strong energy dissipation and good lateral strength with stability after high displacements. This behavior of the log shear wall system is evidence that a higher R could possibly be used in design. The purpose of this study was to establish a response modification factor for single story log shear walls based on available shear wall tests using the definition of R provided in ATC-19. This research did not conduct testing according to the protocol and methodology of ATC-63. This work contains a history of the development of seismic design provisions in the U.S. and the evolution of the response modification coefficient. Common log construction practices are reviewed, with reference to ICC 400- Standard on Design and Construction of Log Structures. Using data provided by other researchers from physical testing and computer modeling of various types of log shear walls, an R of 6.0 is proposed based on the provisions of ATC-19. Finally, recommendations for further research to fully understand the behavior of the log shear wall system, including possible archetypes required by the methodology set forth in ATC-63, are provided.

Page generated in 0.026 seconds