Spelling suggestions: "subject:"05545 tessellation anda tiling problems"" "subject:"05545 tessellation ando tiling problems""
1 |
An Exposition of Kasteleyn's Solution of the Dimer ModelStucky, Eric 01 January 2015 (has links)
In 1961, P. W. Kasteleyn provided a baffling-looking solution to an apparently simple tiling problem: how many ways are there to tile a rectangular region with dominos? We examine his proof, simplifying and clarifying it into this nearly self-contained work.
|
2 |
Counting Vertices in Isohedral TilingsChoi, John 31 May 2012 (has links)
An isohedral tiling is a tiling of congruent polygons that are also transitive, which is to say the configuration of degrees of vertices around each face is identical. Regular tessellations, or tilings of congruent regular polygons, are a special case of isohedral tilings. Viewing these tilings as graphs in planes, both Euclidean and non-Euclidean, it is possible to pose various problems of enumeration on the respective graphs. In this paper, we investigate some near-regular isohedral tilings of triangles and quadrilaterals in the hyperbolic plane. For these tilings we enumerate vertices as classified by number of edges in the shortest path to a given origin, by combinatorially deriving their respective generating functions.
|
Page generated in 0.1619 seconds