• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trees with Unique Minimum Semitotal Dominating Sets

Haynes, Teresa W., Henning, Michael A. 01 May 2020 (has links)
A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number is the minimum cardinality of a semitotal dominating set of G. We observe that the semitotal domination number of a graph G falls between its domination number and its total domination number. We provide a characterization of trees that have a unique minimum semitotal dominating set.
2

A Bound on the Number of Spanning Trees in Bipartite Graphs

Koo, Cheng Wai 01 January 2016 (has links)
Richard Ehrenborg conjectured that in a bipartite graph G with parts X and Y, the number of spanning trees is at most the product of the vertex degrees divided by |X|⋅|Y|. We make two main contributions. First, using techniques from spectral graph theory, we show that the conjecture holds for sufficiently dense graphs containing a cut vertex of degree 2. Second, using electrical network analysis, we show that the conjecture holds under the operation of removing an edge whose endpoints have sufficiently large degrees. Our other results are combinatorial proofs that the conjecture holds for graphs having |X| ≤ 2, for even cycles, and under the operation of connecting two graphs by a new edge. We also make two new conjectures based on empirical data, each of which is stronger than Ehrenborg's conjecture.
3

Largest Laplacian Eigenvalue and Degree Sequences of Trees

Biyikoglu, Türker, Hellmuth, Marc, Leydold, Josef January 2008 (has links) (PDF)
We investigate the structure of trees that have greatest maximum eigenvalue among all trees with a given degree sequence. We show that in such an extremal tree the degree sequence is non-increasing with respect to an ordering of the vertices that is obtained by breadth-first search. This structure is uniquely determined up to isomorphism. We also show that the maximum eigenvalue in such classes of trees is strictly monotone with respect to majorization. (author´s abstract) / Series: Research Report Series / Department of Statistics and Mathematics
4

Graphs with given degree sequence and maximal spectral radius

Biyikoglu, Türker, Leydold, Josef January 2008 (has links) (PDF)
We describe the structure of those graphs that have largest spectral radius in the class of all connected graphs with a given degree sequence. We show that in such a graph the degree sequence is non-increasing with respect to an ordering of the vertices induced by breadth-first search. For trees the resulting structure is uniquely determined up to isomorphism. We also show that the largest spectral radius in such classes of trees is strictly monotone with respect to majorization. This paper is the revised final version of the preprint no. 35 of this research report series. (author´s abstract) / Series: Research Report Series / Department of Statistics and Mathematics
5

Semiregular Trees with Minimal Laplacian Spectral Radius

Biyikoglu, Türker, Leydold, Josef January 2009 (has links) (PDF)
A semiregular tree is a tree where all non-pendant vertices have the same degree. Among all semiregular trees with fixed order and degree, a graph with minimal (adjacency / Laplacian) spectral radius is a caterpillar. Counter examples show that the result cannot be generalized to the class of trees with a given (non-constant) degree sequence. / Series: Research Report Series / Department of Statistics and Mathematics
6

Algebraic Connectivity and Degree Sequences of Trees

Biyikoglu, Türker, Leydold, Josef January 2008 (has links) (PDF)
We investigate the structure of trees that have minimal algebraic connectivity among all trees with a given degree sequence. We show that such trees are caterpillars and that the vertex degrees are non-decreasing on every path on non-pendant vertices starting at the characteristic set of the Fiedler vector. (author´s abstract) / Series: Research Report Series / Department of Statistics and Mathematics
7

Semiregular Trees with Minimal Index

Biyikoglu, Türker, Leydold, Josef January 2009 (has links) (PDF)
A semiregular tree is a tree where all non-pendant vertices have the same degree. Belardo et al. (MATCH Commun. Math. Chem. 61(2), pp. 503-515, 2009) have shown that among all semiregular trees with a fixed order and degree, a graph with index is caterpillar. In this technical report we provide a different proof for this theorem. Furthermore, we give counter examples that show that this result cannot be generalized to the class of trees with a given (non-constant) degree sequence. / Series: Research Report Series / Department of Statistics and Mathematics
8

Largest Eigenvalues of the Discrete p-Laplacian of Trees with Degree Sequences

Biyikoglu, Türker, Hellmuth, Marc, Leydold, Josef January 2009 (has links) (PDF)
We characterize trees that have greatest maximum p-Laplacian eigenvalue among all trees with a given degree sequence. We show that such extremal trees can be obtained by breadth-first search where the vertex degrees are non-increasing. These trees are uniquely determined up to isomorphism. Moreover, their structure does not depend on p. / Series: Research Report Series / Department of Statistics and Mathematics
9

Faber-Krahn Type Inequalities for Trees

Biyikoglu, Türker, Leydold, Josef January 2003 (has links) (PDF)
The Faber-Krahn theorem states that among all bounded domains with the same volume in Rn (with the standard Euclidean metric), a ball that has lowest first Dirichlet eigenvalue. Recently it has been shown that a similar result holds for (semi-)regular trees. In this article we show that such a theorem also hold for other classes of (not necessarily non-regular) trees. However, for these new results no couterparts in the world of the Laplace-Beltrami-operator on manifolds are known. / Series: Preprint Series / Department of Applied Statistics and Data Processing

Page generated in 0.0488 seconds