• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vertex-Edge Domination in Graphs

Boutrig, Razika, Chellali, Mustapha, Haynes, Teresa W., Hedetniemi, Stephen T. 01 April 2016 (has links)
In this paper we study graph parameters related to vertex-edge domination, where a vertex dominates the edges incident to it as well as the edges adjacent to these incident edges. First, we present new relationships relating the ve-domination to some other domination parameters, answering in the affirmative four open questions posed in the 2007 PhD thesis by Lewis. Then we provide an upper bound for the independent ve-domination number in terms of the ve-domination number for every nontrivial connected K1,k-free graph, with k ≥ 3, and we show that the independent ve-domination number is bounded above by the domination number for every nontrivial tree. Finally, we establish an upper bound on the ve-domination number for connected C5-free graphs, improving a recent bound given for trees.
2

Trees with Unique Minimum Semitotal Dominating Sets

Haynes, Teresa W., Henning, Michael A. 01 May 2020 (has links)
A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number is the minimum cardinality of a semitotal dominating set of G. We observe that the semitotal domination number of a graph G falls between its domination number and its total domination number. We provide a characterization of trees that have a unique minimum semitotal dominating set.
3

Hypergraph Capacity with Applications to Matrix Multiplication

Peebles, John Lee Thompson, Jr. 01 May 2013 (has links)
The capacity of a directed hypergraph is a particular numerical quantity associated with a hypergraph. It is of interest because of certain important connections to longstanding conjectures in theoretical computer science related to fast matrix multiplication and perfect hashing as well as various longstanding conjectures in extremal combinatorics. We give an overview of the concept of the capacity of a hypergraph and survey a few basic results regarding this quantity. Furthermore, we discuss the Lovász number of an undirected graph, which is known to upper bound the capacity of the graph (and in practice appears to be the best such general purpose bound). We then elaborate on some attempted generalizations/modifications of the Lovász number to undirected hypergraphs that we have tried. It is not currently known whether these attempted generalizations/modifications upper bound the capacity of arbitrary hypergraphs. An important method for proving lower bounds on hypergraph capacity is to exhibit a large independent set in a strong power of the hypergraph. We examine methods for this and show a barrier to attempts to usefully generalize certain of these methods to hypergraphs. We then look at cap sets: independent sets in powers of a certain hypergraph. We examine certain structural properties of them with the hope of finding ones that allow us to prove upper bounds on their size. Finally, we consider two interesting generalizations of capacity and use one of them to formulate several conjectures about connections between cap sets and sunflower-free sets.
4

Global Domination Stable Trees

Still, Elizabeth Marie, Haynes, Teresa W. 08 May 2013 (has links)
A set of vertices in a graph G is a global dominating set of G if it dominates both G and its complement G. The minimum cardinality of a global dominating set of G is the global domination number of G. We explore the effects of graph modifications (edge removal, vertex removal, and edge addition) on the global domination number. In particular, for each graph modification, we study the global domination stable trees, that is, the trees whose global domination number remains the same upon the modification. We characterize these stable trees having small global domination numbers.
5

Global Domination Stable Trees

Still, Elizabeth Marie, Haynes, Teresa W. 08 May 2013 (has links)
A set of vertices in a graph G is a global dominating set of G if it dominates both G and its complement G. The minimum cardinality of a global dominating set of G is the global domination number of G. We explore the effects of graph modifications (edge removal, vertex removal, and edge addition) on the global domination number. In particular, for each graph modification, we study the global domination stable trees, that is, the trees whose global domination number remains the same upon the modification. We characterize these stable trees having small global domination numbers.
6

Graphs with Large Italian Domination Number

Haynes, Teresa W., Henning, Michael A., Volkmann, Lutz 01 November 2020 (has links)
An Italian dominating function on a graph G with vertex set V(G) is a function f: V(G) → { 0 , 1 , 2 } having the property that for every vertex v with f(v) = 0 , at least two neighbors of v are assigned 1 under f or at least one neighbor of v is assigned 2 under f. The weight of an Italian dominating function f is the sum of the values assigned to all the vertices under f. The Italian domination number of G, denoted by γI(G) , is the minimum weight of an Italian dominating of G. It is known that if G is a connected graph of order n≥ 3 , then γI(G)≤34n. Further, if G has minimum degree at least 2, then γI(G)≤23n. In this paper, we characterize the connected graphs achieving equality in these bounds. In addition, we prove Nordhaus–Gaddum inequalities for the Italian domination number.

Page generated in 0.0477 seconds