• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 236
  • 43
  • 5
  • 1
  • Tagged with
  • 285
  • 71
  • 55
  • 42
  • 31
  • 25
  • 23
  • 23
  • 21
  • 21
  • 20
  • 20
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

MEMS and Robotics-based Manipulation and Characterization of Micro and Nanomaterials

Zhang, Yong 19 January 2012 (has links)
Advances in the synthesis of micrometer and nanometer-sized materials have resulted in a range of novel materials having unique properties. Characterizing those materials is important for understanding their properties and exploring their applications. Physically manipulating those materials is important for constructing devices. This thesis develops tools and techniques for the manipulation and characterization of micro and nanomaterials. A microelectromechanical systems (MEMS) microgripper is developed to pick and place micro-objects, achieving high repeatability, accuracy, and speed. The adhesion forces at the microscale are overcome by actively releasing the adhered micro-object from the microgripper. A microrobotic system is built based on this microgripper and realizes automated pick-and-place of microspheres to form patterns. To characterize the electrical properties of one-dimensional nanomaterials, a nanorobotic system is developed to control four nanomanipulators for automated four-point probe measurement of individual nanowires inside a scanning electron microscope (SEM). SEM is used as a vision sensor to realize visual servo control and contact detection. To characterize the electromechanical properties of individual nanowires, a MEMS device is designed and fabricated that is capable of simultaneous tensile testing and current-voltage measurement of a nanowire specimen. A nanomanipulation procedure is developed to transfer a single nanowire from its growth substrate to the MEMS device in SEM. The piezoresistive properties of silicon nanowires are characterized. A nanomanipulation system is developed that is capable of being mounted onto and demounted from the SEM specimen stage without opening the high-vacuum chamber. The system architecture allows the nanomanipulators to be transferred through the SEM load-lock. This advance facilitates the replacement of end-effectors and circumvents chamber contamination due to venting.
32

Inclusion Characterization in High Strength Low Alloy Steel

Wu, Chao Peng Paul 17 February 2010 (has links)
The cleanliness of high strength low alloy (HSLA) steel was assessed qualitatively and quantitatively. The determination of inclusion type and inclusion morphology were carried out using Selective Potentiostatic Etching by Electrolytic Dissolution (SPEED) method allowing in-situ examination of inclusion morphology by analytical techniques such as SEM/EDS. Inclusion size analysis mainly involved a combination of an analytical technique to provide images of the sample surface and an image analysis system to accurately measure the inclusion size. Four analytical methods were compared in order to evaluate their suitability for subsequent quantitative analysis. It was found that images taken with backscattered electron imaging mode from the scanning electron microscope provides the most accurate representation of inclusion distribution. The various techniques were used to evaluate HSLA steel grades of similar chemistry produced with and without gas shrouding. The results confirmed that with reoxidation minimized by gas shrouding between ladle and tundish, the steel cleanliness was significantly improved.
33

Transparent Conductive Oxides for Organic Photovoltaics

Murdoch, Graham 06 April 2010 (has links)
Organic solar cells and organic light emitting diodes are on the forefront of emerging technologies aimed at harnessing light in ways never thought possible. Largear installations of OLED solid state lighting (SSL), as well as organic photovoltaics(OPVs), will become possible as the efficiencies of these devices continue to rise. All organic solar cells and OLEDs require the use of transparent conductive electrodes.Indium oxide (ITO) is currently the transparent conductor of choice for these applications, due to its unique combination of transparency, high conductivity, durability,and favourable surface properties. Indium, however, is a rare and expensive metal; proposed large-area installations of OPV cells and OLEDs will add further strain to global indium supply. Transparent conductive materials that are abundant, inexpensive, and which enable efficient and robust organic devices must therefore be developed. In the present work, suitable ITO anode replacement materials are demonstrated for OLEDS, small-molecule, polymer, and PbS colloidal quantum dot photovoltaics.
34

Inclusion Characterization in High Strength Low Alloy Steel

Wu, Chao Peng Paul 17 February 2010 (has links)
The cleanliness of high strength low alloy (HSLA) steel was assessed qualitatively and quantitatively. The determination of inclusion type and inclusion morphology were carried out using Selective Potentiostatic Etching by Electrolytic Dissolution (SPEED) method allowing in-situ examination of inclusion morphology by analytical techniques such as SEM/EDS. Inclusion size analysis mainly involved a combination of an analytical technique to provide images of the sample surface and an image analysis system to accurately measure the inclusion size. Four analytical methods were compared in order to evaluate their suitability for subsequent quantitative analysis. It was found that images taken with backscattered electron imaging mode from the scanning electron microscope provides the most accurate representation of inclusion distribution. The various techniques were used to evaluate HSLA steel grades of similar chemistry produced with and without gas shrouding. The results confirmed that with reoxidation minimized by gas shrouding between ladle and tundish, the steel cleanliness was significantly improved.
35

Transparent Conductive Oxides for Organic Photovoltaics

Murdoch, Graham 06 April 2010 (has links)
Organic solar cells and organic light emitting diodes are on the forefront of emerging technologies aimed at harnessing light in ways never thought possible. Largear installations of OLED solid state lighting (SSL), as well as organic photovoltaics(OPVs), will become possible as the efficiencies of these devices continue to rise. All organic solar cells and OLEDs require the use of transparent conductive electrodes.Indium oxide (ITO) is currently the transparent conductor of choice for these applications, due to its unique combination of transparency, high conductivity, durability,and favourable surface properties. Indium, however, is a rare and expensive metal; proposed large-area installations of OPV cells and OLEDs will add further strain to global indium supply. Transparent conductive materials that are abundant, inexpensive, and which enable efficient and robust organic devices must therefore be developed. In the present work, suitable ITO anode replacement materials are demonstrated for OLEDS, small-molecule, polymer, and PbS colloidal quantum dot photovoltaics.
36

Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs

Yoo, Abraham 23 February 2011 (has links)
In this thesis, next generation low-voltage integrated power semiconductor devices are proposed and analyzed in terms of device structure and layout optimization techniques. Both approaches strive to minimize the power consumption of the output stage in DC-DC converters. In the first part of this thesis, we present a low-voltage CMOS power transistor layout technique, implemented in a 0.25µm, 5 metal layer standard CMOS process. The hybrid waffle (HW) layout was designed to provide an effective trade-off between the width of diagonal source/drain metal and the active device area, allowing more effective optimization between switching and conduction losses. In comparison with conventional layout schemes, the HW layout exhibited a 30% reduction in overall on-resistance with 3.6 times smaller total gate charge for CMOS devices with a current rating of 1A. Integrated DC-DC buck converters using HW output stages were found to have higher efficiencies at switching frequencies beyond multi-MHz. In the second part of the thesis, we present a CMOS-compatible lateral superjunction FINFET (SJ-FINFET) on a SOI platform. One drawback associated with low-voltage SJ devices is that the on-resistance is not only strongly dependent on the drift doping concentration but also on the channel resistance as well. To resolve the issue, a SJ-FINFET structure consisting of a 3D trench gate and SJ drift region was developed to minimize both channel and drift resistances. Several prototype devices were fabricated in a 0.5µm CMOS compatible process with nine masking layers. In comparison with conventional SJ-LDMOSFETs, the fabricated SJ-FINFETs demonstrated approximately 30% improvement in Ron,sp. This is a positive indication that the SJ-FINFET can become a competitive power device for sub-100V rating applications.
37

MEMS and Robotics-based Manipulation and Characterization of Micro and Nanomaterials

Zhang, Yong 19 January 2012 (has links)
Advances in the synthesis of micrometer and nanometer-sized materials have resulted in a range of novel materials having unique properties. Characterizing those materials is important for understanding their properties and exploring their applications. Physically manipulating those materials is important for constructing devices. This thesis develops tools and techniques for the manipulation and characterization of micro and nanomaterials. A microelectromechanical systems (MEMS) microgripper is developed to pick and place micro-objects, achieving high repeatability, accuracy, and speed. The adhesion forces at the microscale are overcome by actively releasing the adhered micro-object from the microgripper. A microrobotic system is built based on this microgripper and realizes automated pick-and-place of microspheres to form patterns. To characterize the electrical properties of one-dimensional nanomaterials, a nanorobotic system is developed to control four nanomanipulators for automated four-point probe measurement of individual nanowires inside a scanning electron microscope (SEM). SEM is used as a vision sensor to realize visual servo control and contact detection. To characterize the electromechanical properties of individual nanowires, a MEMS device is designed and fabricated that is capable of simultaneous tensile testing and current-voltage measurement of a nanowire specimen. A nanomanipulation procedure is developed to transfer a single nanowire from its growth substrate to the MEMS device in SEM. The piezoresistive properties of silicon nanowires are characterized. A nanomanipulation system is developed that is capable of being mounted onto and demounted from the SEM specimen stage without opening the high-vacuum chamber. The system architecture allows the nanomanipulators to be transferred through the SEM load-lock. This advance facilitates the replacement of end-effectors and circumvents chamber contamination due to venting.
38

Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs

Yoo, Abraham 23 February 2011 (has links)
In this thesis, next generation low-voltage integrated power semiconductor devices are proposed and analyzed in terms of device structure and layout optimization techniques. Both approaches strive to minimize the power consumption of the output stage in DC-DC converters. In the first part of this thesis, we present a low-voltage CMOS power transistor layout technique, implemented in a 0.25µm, 5 metal layer standard CMOS process. The hybrid waffle (HW) layout was designed to provide an effective trade-off between the width of diagonal source/drain metal and the active device area, allowing more effective optimization between switching and conduction losses. In comparison with conventional layout schemes, the HW layout exhibited a 30% reduction in overall on-resistance with 3.6 times smaller total gate charge for CMOS devices with a current rating of 1A. Integrated DC-DC buck converters using HW output stages were found to have higher efficiencies at switching frequencies beyond multi-MHz. In the second part of the thesis, we present a CMOS-compatible lateral superjunction FINFET (SJ-FINFET) on a SOI platform. One drawback associated with low-voltage SJ devices is that the on-resistance is not only strongly dependent on the drift doping concentration but also on the channel resistance as well. To resolve the issue, a SJ-FINFET structure consisting of a 3D trench gate and SJ drift region was developed to minimize both channel and drift resistances. Several prototype devices were fabricated in a 0.5µm CMOS compatible process with nine masking layers. In comparison with conventional SJ-LDMOSFETs, the fabricated SJ-FINFETs demonstrated approximately 30% improvement in Ron,sp. This is a positive indication that the SJ-FINFET can become a competitive power device for sub-100V rating applications.
39

Influence of Crystalline Microstructure on Optical Response of Single ZnSe Nanowires

Saxena, Ankur 12 December 2013 (has links)
Semiconductor nanowires (NWs) are anticipated to play a crucial role in future electronic and optoelectronic devices. Their practical applications remain hindered by an urging need for feasible strategies to tailor their optical and electronic properties. Strategies based on strain and alloying are limited by issues such as defects, interface broadening and alloy scattering. In this thesis, a novel method to engineer the optoelectronic properties based on strain-free periodic structural modulations in chemically homogeneous Nanowire Twinning Superlattices (NTSLs) is experimentally demonstrated. NTSLs are an emerging new class of nanoscale material, composed of periodically arranged rotation twin-planes along the length of NWs. The main objective of this thesis is to establish the relationship between the electronic energy band gap (Eg) and the twin-plane spacing (d) in NTSLs, quantified using a periodicity parameter, based on ZnSe. ZnSe was chosen because of its excellent luminescence properties, and potential in fabrication of optoelectronic devices in the near-UV and blue region of the spectrum. A prerequisite to establishing this correspondence is a prior knowledge of the photoluminescence (PL) response and the nature of fundamental optical transitions in defect-free single crystal ZnSe NWs with zinc-blende (ZB) and wurtzite (WZ) crystal structures. There has been no systematic work done yet on understanding these fundamental optical processes, particularly on single NWs and in relation to their crystalline microstructure. Therefore, the secondary objective of this thesis is to study the influence of native point defects on the optical response of single ZnSe NWs in direct relation to their crystalline microstructure. The PL response from single ZB and WZ NWs was determined unambiguously, and excitonic emission linewidths close to 1 meV were observed, which are the narrowest reported linewidths thus far on ZnSe NWs. Based on this and extensive optical and structural characterization on individual NTSLs, a linear variation in Eg is shown through a monotonic shift in PL peak position from ZnSe NTSLs as a function of d, with Eg's that lie between those of ZB and WZ crystal structures. This linear variation in Eg was also validated by ab Initio electronic structure calculations. This establishes NTSLs as new nanoscale polytypes advantageous for applications requiring tunable band gaps.
40

Scanning Tunneling Microscopy Investigation of Rare Earth Silicide and Alkaline Earth Fluoride Nanostructures on Silicon(001) Surfaces

Cui, Yan Jr. 30 August 2011 (has links)
Many low dimensional structures arise from self-assembly when depositing metals on silicon surfaces, including both quantum dots and quantum wires. One class of these objects are rare earth silicide nanowires (RENW) grown on Si(001). In this dissertation, NW thermal stability, control of NW cross section, and associated surface reconstructions are studied by Scanning Tunneling Microscopy (STM). We test thulium and find for the first time that it forms NWs and these NWs are stable against prolonged annealing. We also find that the RENWs nucleate at 2×7 reconstruction domain boundaries. These results pave the way for precise control over NW size, placement, and integration with functional nanostructures and nanodevices.Another type of self-assembled NWs on Si(001) are insulating CaF2 NWs. As an ideal model system for epitaxial growth of an insulator on a semiconductor surface, CaF2 offers unique properties such as simple structure, good lattice match to silicon and congruent evaporation. In this thesis the growth behavior of CaF2 on the Si(001) surface is investigated. At low coverages CaF2 molecules randomly locate on Si(001). Features observed at this stage are explained in terms of dissociated fragments of CaF2 terminating the dangling bonds of Si dimers. Etching is observed after surface is saturated by these features with a 2×1 periodicity. A 2×n phase, grown at 750°C, suggests the dissociation of CaF2, as proved by the simulation of LEED patterns. A c(4×4) phase is observed from 0.5ML to about 1ML with deposition temperature from 600oC to 700oC. At the highest CaF2 deposition coverages studied, a stripe phase and CaF2 NWs are observed by a combination of STM, AFM and SEM. The results provide a significant expansion in the knowledge of CaF2 on Si(001). The common thread that links all these studies is the extent to which nanostructures can be controlled by careful growth conditions, not just by substrate temperature and the amount of material deposited, but also by timing of post-deposition annealing, etc. The grown nanostructures are metastable and result from a balance of energetic considerations and kinetics.

Page generated in 0.0197 seconds