41 |
Geochemical investigation and quantification of potential CO₂ storage within the Arbuckle aquifer, KansasCampbell, Brent D. January 1900 (has links)
Master of Science / Department of Geology / Saugata Datta / With the ever-rising atmospheric concentrations of CO₂ there arises a need to either reduce emissions or develop technology to store or utilize the gas. Geologic carbon storage is a potential solution to this global problem. This work is a part of the U.S. Department of Energy small-scale pilot studies investigating different areas for carbon storage within North America, with Kansas being one of them. This project is investigating the feasibility for CO₂ storage within the hyper-saline Arbuckle aquifer in Kansas. The study incorporates the investigation of three wells that have been drilled to basement; one well used as a western calibration study (Cutter), and the other two as injection and monitoring wells (Wellington 1-28 and 1-32). Future injection will occur at the Wellington field within the Arbuckle aquifer at a depth of 4,900-5,050 ft. This current research transects the need to understand the lateral connectivity of the aquifers, with Cutter being the focus of this study. Three zones are of interest: the Mississippian pay zone, a potential baffle zone, and the Arbuckle injection zone. Cored rock analyses and analyzed formation water chemistry determined that at Wellington there exists a zone that separated the vertical hydrologic flow units within the Arbuckle. This potential low porosity baffle zone within the Arbuckle could help impede the vertical migration of the buoyant CO₂ gas after injection. Geochemical analysis from formation water within Cutter indicates no vertical separation of the hydrologic units and instead shows a well-mixed zone. The lateral distance between Cutter and Wellington is approximately 217 miles. A well-mixed zone would allow the CO₂ plume to migrate vertically and potentially into potable water sources. Formation brine from Cutter was co-injected with supercritical CO₂ into a cored rock from within the Arbuckle (7,098 ft.). Results show that the injected CO₂ preferentially preferred a flow pathway between the chert nodules and dolomite. Post reaction formation chemistry of the brine showed the greatest reactivity occurring with redox sensitive species. Reactivity of these species could indicate that they will only be reactive on the CO₂ plumes front, and show little to no reactivity within the plume.
|
42 |
Geochemical significance of arsenic and manganese toxicity in groundwaters from Murshidabad district, West Bengal, IndiaSasidharan, Sankar Manalilkada January 1900 (has links)
Master of Science / Department of Geology / Saugata Datta / Mass poisoning of arsenic (As) has affected roughly 60 million people in the Bengal Basin (Bangladesh and West Bengal, India) and 43 million people alone in West Bengal. Elevated levels of Manganese (Mn) is another alarming issue in the groundwaters of this region (MCLs: As<10µg/L and Mn< 0.4mg/L). Four locations in Murshidabad district (south-central part of Bengal Basin) were chosen for this current study. Among the 4 locations, two of them showed high concentration of As (>50 - 4622µg/L; 2009 survey) and they are Beldanga: 23° 56'N& 88°15'E and Hariharpara: 24°3.68'N & 88° 21.63'E. On the other hand: Nabagram (24°12.08'N & 88°13.29'E) and Kandi (23°58.6'N & 88°6.68'E) demonstrated less dissolved As (<10µg/L) in groundwaters. Study areas were located to the west (Nabagram, Kandi) and east (Beldanga, Hariharpara) of the river Bhagirathi, a tributary of the river Ganges, flowing N-S through the district of Murshidabad. Eastern side of the river is occupied by grey colored Holocene sediments and western side has more oxidized orangish-brown Pleistocene sediments. Comparative study of major water quality parameters between these sites revealed high As (10-1263µg/L) and low Mn (0.1-1.3mg/L) in the areas like Beldanga, Hariharpara while low As (0-15µg/L) and higher Mn (0.2-4.2mg/L) in Nabagram and Kandi. The pH range for high and low As areas were 4.5-7.8 and 5.1-8.2 respectively. Phosphates showed values <0.04-2.21mg/L in high As areas and <0.08-2.52mg/L in low areas whereas Cl- values were higher within low As areas (29-200mg/L) and lower within high As areas (3.9-78.4mg/L). Fe(t) and Fe2+ values at high and low As areas were 0-13.5mg/L, 0.01-0.11mg/L and 0-1.4mg/L, 0.04-0.06mg/L respectively. δ18O and δD results revealed that monsoonal precipitation is the major recharge source in this area with some input from the surficial waterbodies as ponds in shallower depths within high As areas. The total As extracted from core sediments in these areas do not show much difference: total As in high and low As areas ranges from 6.4-18 mg/kg. Sequential extraction results revealed that majority of the sediment bound As is present in residual phases (>40%).
DOC in groundwaters in high and low As areas were 1.5-3.2 and 0.5-1.3mg/L respectively and they had positive correlation with As within the depth profiles. Dissolved organic matter (DOM) characterization studies indicated that microbial proteins (Tyrosine and Tryptophan) are the major components in the groundwaters in the low As region, whereas high As area groundwaters tend to have higher content of humic DOM (A and C). Cl/Br molar ratio of high As wells were low compared to the low As wells. Current study revealed the importance of organic matters (and not the mineralogy of the sediments) both in sediments and groundwaters in controlling the release of As from sediment, at least in the shallow parts of Bengal delta aquifer and microbial mediated reductive dissolution of FeOOH in the presence of organic matter is the major mechanisms by which sediment bound As (<50m depth) is released into the groundwater. The darker organic matter rich sediments (OM both sediment bound and anthropogenically derived) existing at the depth range 20m-50m with reducing environment persisting in both high and low As areas are possible reasons for elevated levels of As in this region.
|
43 |
Chemical, Isotopic, and Textural Characteristics of Diamond Crystals and Their Mineral Inclusions from A154 South (Northwest Territories), Lynx (Quebec), and Kelsey Lake (Colorado): Implications for Growth Histories and Different Mantle EnvironmentsVan Rythoven, Adrian David 31 August 2012 (has links)
Parcels of diamond crystals from the A154 South kimberlite diatreme, Northwest Territories (n=281), and the Lynx kimberlite dyke, Quebec (n=6598) were examined in terms of colour, size, morphology, and UV fluorescence (A154 South samples only). A subset of stones from each parcel (A154 South: n=60, Lynx: n=20) were cut and polished to expose internal zonation and mineral inclusions. Exposed primary mineral inclusions were quantitatively analyzed for major elements by EMPA.
Diamond crystals from the Kelsey Lake kimberlite diatreme, Colorado (n=20), were cut into plates and analyzed for nitrogen aggregation states by FTIR. Twelve of these stones were then analyzed with further subsets from A154 South (n=18) and Lynx (n=16) for carbon isotope ratios and nitrogen abundances by SIMS. Every diamond crystal cut and polished had its internal zonation imaged with CL.
Mineral inclusion data from A154 South and Lynx show that the mantle keel of the Slave craton is slightly less depleted than that of the Superior craton, and both are less depleted than those of the Kaapvaal and Siberian cratons. Equilibration conditions plot on hotter geothermal gradients (surface heat flows ~42 mW/m2) than for those of typical Archean cratons (≤40 mW/m2). Equilibration temperatures (~1150-1250°C) are ~100-200°C hotter than previously reported from Kelsey Lake (~1020°C).
Kelsey Lake and A154 South samples have carbon isotope ratios and nitrogen contents typical of most diamond populations worldwide. Diamond crystals from Lynx are entirely different, consisting of mostly Type II diamond with δ13C (vs. PDB) values from approximately -3.6 ‰ to +1.7 ‰. These 13C-enriched samples are suggested to be the result of extreme Rayleigh fractionation of diamond from a carbonate fluid and possibly input of carbon sourced from subducted abiotic oceanic crust. Also notable is that growth trends (δ13C-[NT]) for most of the samples studied show little or no consistency with published fractionation models.
|
44 |
Mg/Ca Ratios in Crustose Coralline Algae as Proxies for Reconstructing Labrador Current VariabilityGamboa, Gimy 26 July 2010 (has links)
Climate variability in the North Atlantic has been linked in part to the North Atlantic Oscillation (NAO). The NAO influences marine ecosystems in the northwestern Atlantic and the transport
variability of the cold Labrador Current (LC). Understanding historic patterns and predicting future changes in LC transport require long-term and high-resolution climate records that are not available from instrumental data sets.
This thesis presents the first century-scale sea surface temperature (SST)reconstructions from the Northwestern Atlantic using Mg/Ca ratios in the long-lived crustose coralline algae Clathromorphum compactum. which is characterized by a high Mg-calcite skeleton exhibiting annual growth increments.
Results indicate strong correlations between interannual variations in Mg/Ca ratios and
instrumental SST. The 131-year algal Mg/Ca record reveals NAO-type periodicities and
evidence of past cold events and warming periods associated with basin-wide ecosystem shifts.
Negative correlations between LC volume transport and algal Mg/Ca reflect the cooling
influence of the LC on eastern Canadian shelf ecosystems.
|
45 |
Mg/Ca Ratios in Crustose Coralline Algae as Proxies for Reconstructing Labrador Current VariabilityGamboa, Gimy 26 July 2010 (has links)
Climate variability in the North Atlantic has been linked in part to the North Atlantic Oscillation (NAO). The NAO influences marine ecosystems in the northwestern Atlantic and the transport
variability of the cold Labrador Current (LC). Understanding historic patterns and predicting future changes in LC transport require long-term and high-resolution climate records that are not available from instrumental data sets.
This thesis presents the first century-scale sea surface temperature (SST)reconstructions from the Northwestern Atlantic using Mg/Ca ratios in the long-lived crustose coralline algae Clathromorphum compactum. which is characterized by a high Mg-calcite skeleton exhibiting annual growth increments.
Results indicate strong correlations between interannual variations in Mg/Ca ratios and
instrumental SST. The 131-year algal Mg/Ca record reveals NAO-type periodicities and
evidence of past cold events and warming periods associated with basin-wide ecosystem shifts.
Negative correlations between LC volume transport and algal Mg/Ca reflect the cooling
influence of the LC on eastern Canadian shelf ecosystems.
|
46 |
Chemical, Isotopic, and Textural Characteristics of Diamond Crystals and Their Mineral Inclusions from A154 South (Northwest Territories), Lynx (Quebec), and Kelsey Lake (Colorado): Implications for Growth Histories and Different Mantle EnvironmentsVan Rythoven, Adrian David 31 August 2012 (has links)
Parcels of diamond crystals from the A154 South kimberlite diatreme, Northwest Territories (n=281), and the Lynx kimberlite dyke, Quebec (n=6598) were examined in terms of colour, size, morphology, and UV fluorescence (A154 South samples only). A subset of stones from each parcel (A154 South: n=60, Lynx: n=20) were cut and polished to expose internal zonation and mineral inclusions. Exposed primary mineral inclusions were quantitatively analyzed for major elements by EMPA.
Diamond crystals from the Kelsey Lake kimberlite diatreme, Colorado (n=20), were cut into plates and analyzed for nitrogen aggregation states by FTIR. Twelve of these stones were then analyzed with further subsets from A154 South (n=18) and Lynx (n=16) for carbon isotope ratios and nitrogen abundances by SIMS. Every diamond crystal cut and polished had its internal zonation imaged with CL.
Mineral inclusion data from A154 South and Lynx show that the mantle keel of the Slave craton is slightly less depleted than that of the Superior craton, and both are less depleted than those of the Kaapvaal and Siberian cratons. Equilibration conditions plot on hotter geothermal gradients (surface heat flows ~42 mW/m2) than for those of typical Archean cratons (≤40 mW/m2). Equilibration temperatures (~1150-1250°C) are ~100-200°C hotter than previously reported from Kelsey Lake (~1020°C).
Kelsey Lake and A154 South samples have carbon isotope ratios and nitrogen contents typical of most diamond populations worldwide. Diamond crystals from Lynx are entirely different, consisting of mostly Type II diamond with δ13C (vs. PDB) values from approximately -3.6 ‰ to +1.7 ‰. These 13C-enriched samples are suggested to be the result of extreme Rayleigh fractionation of diamond from a carbonate fluid and possibly input of carbon sourced from subducted abiotic oceanic crust. Also notable is that growth trends (δ13C-[NT]) for most of the samples studied show little or no consistency with published fractionation models.
|
47 |
Novel Analytical Approaches for the Characterization of Natural Organic Matter in the Cryosphere and its Potential Impacts on Climate ChangePautler, Brent Gregory 14 January 2014 (has links)
Climate change is predicted to be the most pronounced in high latitude ecosystems, however very little is known about their vulnerability to the projected warmer temperatures. In particular, natural organic matter (NOM) in the high latitude cryosphere which includes dissolved organic matter (DOM) and cryoconite organic matter (COM) from glaciers and soil organic matter (SOM) in permafrost, is highly susceptible to climate change which may lead to severe consequences on both local and global carbon biogeochemical cycles. Examination of DOM in
glacier ice by a novel 1H nuclear magnetic resonance (NMR) water suppression pulse sequence at its natural abundance revealed and quantified the composition and the organic constituents in ice samples from Antarctica. 1H NMR spectra of samples from several glaciers were acquired and compared to the dominant fluorescent DOM fraction. This comprehensive approach showed that glacier ice DOM was mainly composed of small, labile biomolecules associated with microbes. Examination of the organic debris found on glacier surfaces (COM) from both Arctic and Antarctic glaciers were determined to be derived from microbes. Samples from Arctic
glaciers were more chemically heterogeneous with small inputs of plant-derived material
detected after targeted extractions. Therefore the COM carbon composition was determined to be dependent on the local glacier environment, suggesting a site specific contribution to the carbon
cycle. Finally, the distribution of extracted branched glycerol dialkyl glycerol tetraether (GDGT)microbial membrane lipids and the deuterium incorporation of plant-wax n-alkane biomarkers extracted from dated permafrost SOM (paleosols) were independently applied for Canadian Arctic climate reconstruction during the last glacial maximum. Overall, the branched GDGT based temperature reconstructions from the Arctic paleosols reconstruct higher temperatures, likely when bacterial activity was optimal. The deuterium composition of the C29 n-alkane plant lipids appears to integrate an average annual signal. Further analysis by both non-selective NMR spectroscopic and targeted biomarker techniques on these paleosol samples revealed that the major vegetative sources from this paleoecosystem originated from woody and non-woody angiosperms. This thesis demonstrates several novel analytical characterization techniques, along with the major sources and composition of NOM in the cryosphere while demonstrating its use in paleoclimate applications.
|
48 |
Diapirism on Venus and the Early Earth and The thermal effect of fluid flows in AECL's Tunnel Sealing ExperimentRobin, Catherine M. I. 01 September 2010 (has links)
Flow instabilities occur at all scales in planetary systems. In this thesis we examine three cases of such instabilities, on three very different length scales.
In the first part, we test the idea that Archean granite-greenstone belts (GGBs) form
by crustal diapirism, or Rayleigh-Taylor instabilities. GGBs are characterized by large granitic domes (50-100 km in diameter) embedded in narrow keel-shaped greenstones.
They are ubiquitous in Archean (> 2.5 Ga) terrains, but rare thereafter. We performed
finite element calculations for a visco-elastic, temperature-dependent, non-Newtonian
crust under conditions appropriate for the Archean, which show that dense low-viscosity
volcanics overlying a felsic basement will overturn diapirically in as little as 10 Ma, displacing as much as 60 % of the volcanics to the lower crust. This surprisingly fast overturn rate suggests that diapiric overturn dominated crustal tectonics in the hot conditions of the Early Earth, becoming less important as the Earth cooled. Moreover, the deposition of large volumes of wet basaltic volcanics to the lower crust may provide the source for the formation of the distinctly Archean granitic rocks which dominate Earth's oldest continents.
The second part examines the origin of Venusian coronae, circular volcanic features
unique to Venus. Coronae are thought to result from small instabilities (diapirs) from the core-mantle boundary, which are typical of stagnant-lid convection. However, most young coronae are located in a region surrounded by long-lived hotspots, typical of a more active style of mantle convection. Using analogue experiments in corn syrup heated from below, we show that the co-existence of diapirs and long-lived mantle plumes are a direct consequence of the catastrophic overturn of the cold Venusian lithosphere thought to have occurred ~ 700 Ma ago.
In the last part we analyze the thermal effect of fluid flow through a full-scale experiment testing clay and concrete tunnel seals in a Deep Geological Repository for nuclear was finite element software, we were able to show that the formation of fissures in the heated chamber between the two seals effectively limited heat flow, and could explain the discrepancy between the predicted and measured temperatures.
|
49 |
Novel Analytical Approaches for the Characterization of Natural Organic Matter in the Cryosphere and its Potential Impacts on Climate ChangePautler, Brent Gregory 14 January 2014 (has links)
Climate change is predicted to be the most pronounced in high latitude ecosystems, however very little is known about their vulnerability to the projected warmer temperatures. In particular, natural organic matter (NOM) in the high latitude cryosphere which includes dissolved organic matter (DOM) and cryoconite organic matter (COM) from glaciers and soil organic matter (SOM) in permafrost, is highly susceptible to climate change which may lead to severe consequences on both local and global carbon biogeochemical cycles. Examination of DOM in
glacier ice by a novel 1H nuclear magnetic resonance (NMR) water suppression pulse sequence at its natural abundance revealed and quantified the composition and the organic constituents in ice samples from Antarctica. 1H NMR spectra of samples from several glaciers were acquired and compared to the dominant fluorescent DOM fraction. This comprehensive approach showed that glacier ice DOM was mainly composed of small, labile biomolecules associated with microbes. Examination of the organic debris found on glacier surfaces (COM) from both Arctic and Antarctic glaciers were determined to be derived from microbes. Samples from Arctic
glaciers were more chemically heterogeneous with small inputs of plant-derived material
detected after targeted extractions. Therefore the COM carbon composition was determined to be dependent on the local glacier environment, suggesting a site specific contribution to the carbon
cycle. Finally, the distribution of extracted branched glycerol dialkyl glycerol tetraether (GDGT)microbial membrane lipids and the deuterium incorporation of plant-wax n-alkane biomarkers extracted from dated permafrost SOM (paleosols) were independently applied for Canadian Arctic climate reconstruction during the last glacial maximum. Overall, the branched GDGT based temperature reconstructions from the Arctic paleosols reconstruct higher temperatures, likely when bacterial activity was optimal. The deuterium composition of the C29 n-alkane plant lipids appears to integrate an average annual signal. Further analysis by both non-selective NMR spectroscopic and targeted biomarker techniques on these paleosol samples revealed that the major vegetative sources from this paleoecosystem originated from woody and non-woody angiosperms. This thesis demonstrates several novel analytical characterization techniques, along with the major sources and composition of NOM in the cryosphere while demonstrating its use in paleoclimate applications.
|
50 |
Diapirism on Venus and the Early Earth and The thermal effect of fluid flows in AECL's Tunnel Sealing ExperimentRobin, Catherine M. I. 01 September 2010 (has links)
Flow instabilities occur at all scales in planetary systems. In this thesis we examine three cases of such instabilities, on three very different length scales.
In the first part, we test the idea that Archean granite-greenstone belts (GGBs) form
by crustal diapirism, or Rayleigh-Taylor instabilities. GGBs are characterized by large granitic domes (50-100 km in diameter) embedded in narrow keel-shaped greenstones.
They are ubiquitous in Archean (> 2.5 Ga) terrains, but rare thereafter. We performed
finite element calculations for a visco-elastic, temperature-dependent, non-Newtonian
crust under conditions appropriate for the Archean, which show that dense low-viscosity
volcanics overlying a felsic basement will overturn diapirically in as little as 10 Ma, displacing as much as 60 % of the volcanics to the lower crust. This surprisingly fast overturn rate suggests that diapiric overturn dominated crustal tectonics in the hot conditions of the Early Earth, becoming less important as the Earth cooled. Moreover, the deposition of large volumes of wet basaltic volcanics to the lower crust may provide the source for the formation of the distinctly Archean granitic rocks which dominate Earth's oldest continents.
The second part examines the origin of Venusian coronae, circular volcanic features
unique to Venus. Coronae are thought to result from small instabilities (diapirs) from the core-mantle boundary, which are typical of stagnant-lid convection. However, most young coronae are located in a region surrounded by long-lived hotspots, typical of a more active style of mantle convection. Using analogue experiments in corn syrup heated from below, we show that the co-existence of diapirs and long-lived mantle plumes are a direct consequence of the catastrophic overturn of the cold Venusian lithosphere thought to have occurred ~ 700 Ma ago.
In the last part we analyze the thermal effect of fluid flow through a full-scale experiment testing clay and concrete tunnel seals in a Deep Geological Repository for nuclear was finite element software, we were able to show that the formation of fissures in the heated chamber between the two seals effectively limited heat flow, and could explain the discrepancy between the predicted and measured temperatures.
|
Page generated in 0.2648 seconds