• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Existence de solutions pour des équations apparentées au 1 Laplacien anisotrope / Existence of solutions for equations relative to 1 Laplacian anisotropic

Dumas, Thomas 16 July 2018 (has links)
Nous étudions des équations relatives au p-Laplacien anisotrope lorsque certaines composantes du vecteur p sont égales à 1. / We study anisotropic p-Laplacian equations when some components of p are equal to 1.
2

Quelques méthodes de résolution d'équations aux dérivées partielles elliptiques avec contrainte sur les espaces $W^{1, p}$ et $BV$.

Kraiem, Mouna 12 December 2006 (has links) (PDF)
Cette thèse a pour sujet l'étude de quelques équations aux dérivées partielles singulières ou dégénérées, sous contraintes. Sont aussi traitées des équations dites pénalisées qui remplacent la contrainte par un terme qui asymptotiquement tend vers la contrainte, ceci permettant une approximation numériquement plus souple de l'équation aux dérivées partielles avec contrainte. <br />La première partie de cette thèse a fait l'objet d'un article accepté pour publication aux Annales de la Faculté des Sciences de Toulouse. <br />Elle traite de l'approximation de la première valeur propre du 1-Laplacien. <br /> Dans la deuxième partie, les résultats obtenus pour un problème d'obstacle sur $W_p^{0, 1}$, $p> 1$ généralisent le cas $p=2$, traité par Adams et Lenhart. On obtient donc l'existence et l'unicité d'une solution au problème posé. <br />La dernière partie qui fait l'objet d'un article en préparation, traite un problème d'obstacle sur $W_1^{0, 1}$, ce qui nécessite l'introduction de l'espace $BV$. <br /> Les méthodes employées sont celles du calcul des variations, la théorie des fonctions à dérivées mesurées, la topologie vague, la topologie étroite des mesures, la convexité, la théorie de la dualité, l'approximation....

Page generated in 0.0457 seconds