• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Device Voltage Balancing from Device-level to Converter-level in High Power Density Medium Voltage Converter using 10 kV SiC MOSFETs

Lin, Xiang 25 January 2023 (has links)
The electric power system is undergoing a paradigm change on how electric energy is generated, transmitted, and delivered. Power electronics systems which can provide medium-voltage (MV) to high-voltage (HV) output (>13.8 kV ac, > 20 kV dc) with much faster dynamic response (> 10 kHz bandwidth) or high switching-frequency will enable new electronic energy network architectures, like MVDC power delivery, underground solid-state power substation (SSPS), and high-density power electronics building block (PEBB); help drive the levelized cost of electricity (LCOE) of renewable energy on par with conventional power generation; deliver precise and clean power to loads like high-speed electric motors; push the future power system toward 100% renewable energy and energy storage supplied. In the MV to HV area, the power conversion solution is dominated by silicon devices, like SCR, IGCT, and IGBT, which are slow in nature, posing significant switching losses and bulky auxiliary components like turn-on snubbers. Devices in series are required to reach higher voltage. High-frequency HV converter in two-level or three-level bridges running 20 kHz or higher in many emerging applications, like MVDC networks with high-frequency transformers and energy storage integration is hard to be built by silicon solutions. The emerging HV wide-bandgap (WBG) power semiconductors, e.g., 10 kV SiC MOSFETs offer higher blocking capability, faster and more efficient switching performances. This makes the high-frequency power conversion technology feasible for the MV area. To build a MV high-frequency power converter with high-power density, 10 kV SiC MOSFETs in series are required to reach >10 kV operation dc voltage as the single device rating is still limited by the semiconductor process and packaging capability. However, the knowledge of dynamic voltage sharing of high-speed HV SiC devices under high dv/dt rate and effective balancing methods are not fully explored. Both the voltage imbalance and the robust device voltage balancing control are not studied clearly in the existing literature. This dissertation evaluates the voltage imbalance of series-connected 10 kV SiC MOSFETs thoroughly. The parasitic capacitors connected with device terminals are found to be a unique factor for the voltage imbalance of series-connected SiC MOSFETs, which have a significant impact on the dv/dt of different devices based on the detailed analysis. The unbalanced dv/dt and the gate signal mismatch together result in the voltage imbalance of series-connected SiC MOSFETs and a set of new voltage balancing control methods are proposed. Passive capacitor compensation and closed-loop short pulse gate signal control are proposed to solve the voltage imbalance caused by the unbalanced dv/dt. Closed-loop gate delay time control is proposed to solve the voltage imbalance caused by the gate signal mismatch. Two gate driver prototypes are designed and verified for the proposed voltage balancing control methods. As the number of devices increases, the voltage balancing methods under the device-level will be complex and risky to coordinate. Therefore, the converter-level device voltage balancing methods are desired when over three devices are in stack. Therefore, this dissertation proposes to use the 3-level (3L) neutral-point-clamped (NPC) converter structure as a converter-level approach to simplify the voltage balancing control of series-connected SiC MOSFETs. A new modulation strategy is proposed to control the loss of clamping diodes, so compact MV SiC Schottky diodes can be selected to reduce the impact of extra components on the power density. Compared to the phase-leg with direct series-connected SiC MOSFETs, the phase-leg designed with the converter-level approach achieves similar power density, easier voltage balancing control, and better efficiency, which is attractive for both two and four devices in series connection. Finally, this dissertation studies the impact of series-connected 10 kV SiC MOSFETs on MV phase-leg volume reduction with the example of multi-level flying capacitor (FC) converters. The relation between the capacitances of FCs and the device voltage is studied and a new design procedure for FCs is developed to achieve minimum FC energy and regulate the maximum device voltage. With the design procedure, the total FC volumes of a 22 kV 5-level FC converter and a 22 kV 3-level FC converter with series-connected 10 kV SiC MOSFETs are calculated and compared. Series-connected 10 kV SiC MOSFETs are found to help significantly reduce the total FC volume (> 85 %). In summary, this dissertation demonstrates that the direct series connection of 10 kV SiC MOSFETs is a reliable solution for the MV converter design, and the converter-level approach is a better voltage balancing control method. This dissertation also presents a quantitative analysis of the volume reduction enabled by the series-connected 10 kV SiC MOSFETs in MV converter phase-leg design. / Doctor of Philosophy / Emerging industrial applications require medium voltage (MV) power converters. For existing MV converter solutions with Si IGBT, complex system structures are usually required, which affects the efficiency, power density, and cost of the system. For the design of MV converter, the recent 10 kV SiC MOSFET has the promising potential to improve efficiency and power density by adopting a simpler topology and fewer conversion stages. New design challenges also emerge with the new 10 kV SiC MOSFETs and one of them is the device voltage control during the operation. This dissertation mainly focuses on the voltage balancing control of series-connected 10 SiC MOSFETs, which is an attractive solution to build the MV converter phase-leg in a simple structure. Several voltage balance control methods are proposed and compared in this dissertation, which helps justify that the series-connected SiC MOSFET is a reliable approach for the MV converter design. In addition, this dissertation also analyzes the volume reduction enabled by the series-connected SiC MOSFETs with the example of a multi-level flying capacitor converter in dc-ac applications.
2

Failure Modes Analysis and Protection Design of a 7-level 22 kV DC 13.8 kV AC 1.1 MW Flying Capacitor Converter Based on 10 kV SiC MOSFET

Mendes, Arthur Coimbra 01 May 2024 (has links)
The demand for high-power converters are surging due to applications like renewable energy, motor drives and grid-interface applications. Typically, these converters’ power ranges from tens of kilowatts (kW) to several megawatts (MW). To reach such high power levels the converter voltage ratings must increase, as the current ratings cannot be reached by the available devices or because the system losses become excessive. To address this, two strategies can be utilized: multilevel topologies (e.g. Multilevel Modular Converter or Flying Capacitor Multilevel Converter) and high voltage switches. For medium voltage applications, the most commonly employed switches are the IGBT and the IGCT. Both are silicon-based technology and are limited to a rated voltage of 6.5 kV and 4.5 kV, respectively. Often, these devices switching frequency are limited to less than 1 kHz. To expand the frontiers of medium voltage converters and to demonstrate the capabilities of wide band gap devices in medium voltage, a 7-level 13.8 kV AC 22 kV DC 1.1 MW flying capacitor multilevel converter based on 10 kV SiC MOSFET with 2.5 kHz switching frequency was designed and constructed. Given the complexity of a multilevel topology, the high voltage levels, and the critical nature of the loads, a failure in a high-power converter can incur significant costs, long service downtime, and safety risks to personnel. Hence, understanding the failure modes of these converters is essential for designing protections and mitigation strategies to prevent or reduce the risks of failures. Furthermore, the adoption of 10 kV SiC MOSFET introduces additional challenges in terms of protection. Despite their well-known benefits, these devices exhibit shorter energy withstanding time compared with their silicon counterpart, and increased insulation stress resulting from the high dv/dt imposed by the fast-switching transient at higher voltages. In this context, a failure mode analysis was conducted for the converter aforementioned. The analysis examined the fault dynamics and evaluated the protections schemes at the converter level. The study identified a failure mechanism between cells, so called Cell Short- Circuit Fault (CSCF), capable of damaging the entire phase-leg. In response, a protection scheme based on TVS (Transient Voltage Suppression) diodes was designed to prevent extremely imbalanced cell voltages and failure propagation. Because of the high electric field intensity environment of the converter, an FEA (Finite Element Analyses) simulation is performed to verify and control the electric field (E-field) intensity within the protection module itself and in the converter assembly. Next, the protection module insulation design was successfully verified in a Partial Discharge (PD) experiment. In sequence, an experimental verification utilizing an equivalent circuit based on the fault model demonstrated the efficacy of the protection module. Waveforms extracted while the converter was operating showing the protection module acting during a fault are presented and analyzed. Finally, the influence of the protection module in the switching of the 10 kV SiC MOSFET was evaluated via a double pulse test (DPT), revealing negligible effects on the converter performance. / Center of Power Electronics Systems (CPES) Department of Energy (DoE) / Master of Science / Due to governmental policies and market opportunities renewable energy (e.g. solar and wind energy) is increase its share in the electricity generation in the US and around the world. This scenario poses challenges regarding the stability of the grid and variation in the generation along the day. One of the alternatives to alleviate the problem is to use highpower converters that provides a interface between grid and manufacturing plants. This type of converter have bidirectional capabilities and can store the energy generated by solar farms during the day and return it to the grid at night for example. Moreover, it can provide grid support capabilities in terms of variation of frequency and voltage. To expand on the grid interface converters application concept, a medium voltage power converter in 22 kV DC and 13.8 kV AC is designed utilizing novel techniques and the latest technologies in semiconductors, 10 kV SiC MOSFETs. The benefits of this design are a small form factor, high efficiency, immunity to electromagnetic interference and power quality. This work presents a failure mode analysis of the power converter aforementioned, the analysis examined the fault dynamics and an evaluation of the protections schemes at the converter level. The failure analysis revealed the need of a protection scheme extremely imbalanced cell voltages and failure propagation. Hence, a protection module based on TVS (Transient Voltage Suppression) diodes was successfully designed and tested. Due to the high voltages present in this equipment, an FEA (Finite Element Analyses) simulation is performed to verify and control the electric field (E-field) intensity within the protection module itself and in the converter assembly. Experimental results are provided for insulation design integrity (partial discharge test), for the efficacy of the protection module against the fault, and for the impact of the protection module on the operation performance.

Page generated in 0.0319 seconds