• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation et contrôle industriel des contraintes locales en microélectronique : applications aux transistors de technologie 20 nm / Characterization and industrial control of local stress in microelectronics : applications to advanced transistors technology of 20 nm

Durand, Aurèle 29 November 2016 (has links)
De nombreuses techniques de caractérisation sont utilisées dans les industries de la microélectronique dans le but d’inspecter et analyser les circuits. Actuellement, la réduction des dimensions des transistors, l’implémentation d’alliage de silicium-germanium (SiGe) et l’ingénierie des déformations, nécessitent de développer une métrologie innovante des champs de déformations induits par les procédés de fabrication. Ces techniques non-destructives et rapides de caractérisation des déformations doivent être aussi capables d’analyser des nanostructures directement en ligne de production. Dans ce contexte, nous avons évalué les performances de la diffraction de rayons-X haute résolution (HRXRD) et de la spectroscopie Raman à mesurer des déformations, et nous avons proposé une méthodologie adaptée aux exigences de la métrologie.Les équipements industriels de HRXRD développés pour la métrologie, sont aptes à mesurer la déformation de couches nanométriques de SiGe, avec une grande sensibilité (< 10-4). Néanmoins, pour des structures complexes comme les transistors planaires, la complexité du champ de déformation requière la mesure et l’analyse approfondie de cartographies de l’espace réciproque (RSM). Nous avons alors montré l’intérêt et les performances des RSM pour la caractérisation des déformations dans des réseaux de transistors pMOS. Pour ce faire, une méthode inverse a été développée, consistant à simuler des RSM à partir d’une modélisation mécanique des champs de déformation. Différents modèles ont été explorés et un très bon accord entre les RSM mesurées et simulées est établi. Le champ des déformations extrait par cette méthode est corrélé avec succès à celui mesuré par la technique d’holographie électronique en champ sombre, démontrant ainsi l’analyse fine des champs des déformations de pMOS par HRXRD.La spectroscopie µ-Raman a aussi été identifiée comme étant une candidate prometteuse pour l’industrie, du fait de sa résolution spatiale sub-micrométrique et d’une grande sensibilité sur des structures nanométriques. Elle permet de déterminer de manière simultanée l’état de déformation et la composition moyenne d’un film de SiGe de quelques nanomètres d’épaisseur. Ainsi, la spectroscopie µ-Raman a alors permis de révéler que le procédé de condensation, critique pour la création du canal en SiGe contraint des transistors de technologie avancée, induit une inhomogénéité de composition en germanium dans le film de SiGe. Enfin, la résolution spatiale de la spectroscopie µ-Raman et de la spectroscopie Raman exaltée par effet de pointe (TERS) a été déterminée par comparaison de mesures avec des simulations. Ces résultats montrent les évolutions attendues pour répondre aux exigences de l’industrie de la microélectronique.Finalement, une méthodologie industrielle d’HRXRD permettant de suivre en ligne l’évolution du champ de déformation pendant les procédés de fabrication est développée. La méthode principale utilise une librairie de RSM simulées pour toute une série de structures avec des géométries, des compositions en germanium et des paramètres de déformation variables. Les RSM mesurées sont ensuite associées de manière sélective aux RSM simulées inclues dans la librairie, fournissant simplement et rapidement une géométrie et un champ des déformations comme données de sortie, paramètres pouvant être ajustés par des itérations ultérieures si nécessaire. Grâce au développement d’un logiciel (DeusX), qui traite et simule les RSM, l’ensemble de la procédure est capable de suivre, détecter et localiser automatiquement des variations faibles de déformation induites par les étapes de fabrication. L’ensemble des résultats démontrent que la procédure est compatible avec les exigences industrielles : rapidité, robustesse et simplicité. Ce travail est ainsi une avancée majeure vers l’utilisation des RSM pour le suivi industriel en ligne des déformations. / For many years, characterization techniques have been used in the microelectronic industry in order to probe and analyze integrated components. Nowadays the critical downscaling of transistors and implementation of new materials and methods, such as silicon-germanium (SiGe) and strain engineering, induce the necessity of developing innovative metrology in order to monitor the fabrication processes at each step. In this context, there is a need for non-destructive and fast strain characterization techniques, capable of in-line analysis of nano-structures. Within that framework, the capabilities of High Resolution X-Ray Diffraction (HRXRD) and Raman spectroscopy for strain measurements is evaluated and a methodology tailored to in-line metrology constraints is proposed.Industrial HRXRD equipment, developed for an in-line strain metrology have demonstrated their ability to measure strain in SiGe thin films of only a few nanometers thick, with a great sensitivity (< 10-4). Nonetheless, when it comes to advanced structures, such as planar transistors, the strain field complexity requires the measurement and the thorough analysis of Reciprocal Space Mappings (RSM). In this study, we demonstrate the interest and capability of RSM for the characterization of strained structures for gratings of pMOS transistors. A reverse method that consists in using a strain field model to reproduce the measured RSMs is used. The benefit of using different mechanical models is explored and a very good agreement between experimental and simulated RSM’s is established. Strain field extracted by this method is successfully correlated to the one measured by Dark-Field Electron Holography (DFEH) technique, emphasizing the capability of HRXRD for pMOS strain field investigation.Alongside, µ-Raman spectroscopy was also identified to be a promising candidate for the industry, due to a sub-micrometers spatial resolution and a low detection threshold. It enables to determine simultaneously the strain state and the average composition of SiGe thin films down to the nanometer scale. Thereby, µ-Raman reveals that a condensation process, critical to create a strained SiGe channel for advanced transistor technology, induces a germanium composition inhomogeneity in the SiGe thin films. To go further, the spatial resolution of µ-Raman and Tip-enhanced Raman Spectroscopy (TERS) techniques is investigated by comparing the measurements with simulations, highlighting that there is still some way to go before fulfilling the demands of the microelectronics industry.Finally, a HRXRD methodology is developed in order to follow the strain field evolution all along process steps in a manufacturing environment. The main method uses a large library computed for a bunch of structures with varying geometries, germanium content and strain parameters. Then the measured RSMs are selectively matched to the simulated RSMs within the library, providing in a simple and a quick way a close corresponding geometry and strain field as an output, which could then be refined by iteration if necessary. Thanks to a homemade software (DXtract), that processes and simulates the RSMs, the whole procedure is automated and is capable to follow, detect and localize even the small strain variations induced by the manufacturing steps. In addition, all the results demonstrate that the procedure is compatible with industrial constraints, meaning fast, robust and easy to operate. This work is therefore a major step towards the use of RSM for in-line monitoring, which is undoubtedly a relevant technique for industrial strain metrology.
2

Développement de procédés de gravure plasma innovants pour les technologies sub-14 nm par couplage de la lithographie conventionnelle avec l'approche auto-alignée par copolymère à blocs / Development of innovating plasma etching processes for sub 14nm nodes by coupling conventionnal lithography with auto aligned approach based on block copolymer

Bézard, Philippe 29 January 2016 (has links)
Le coût de la poursuite de la miniaturisation des transistors en-dessous de 14 nm demande l’introductionde techniques moins onéreuses comme l’approche auto-alignée par copolymères à blocs (DSA) combinéeà la lithographie 193 nm. Etudiée principalement pour des motifs de tranchées (pour les FinFETs)ou de cylindres verticaux (pour les trous de contact, c’est ce cas qui nous intéressera), le polystyrène-bpolyméthylmétacrylate(PS-b-PMMA) est un des copolymères à blocs les plus étudiés dans la littérature,et dont la gravure présente de nombreux défis dûs à la similarité chimique des deux blocs PS et PMMA.Proposer une solution à ces défis est l’objet de cette thèse.Dans notre cas où le PS est majoritaire, le principe est d’obtenir par auto-organisation des cylindresverticaux de PMMA dans un masque de PS. Le PMMA est ensuite retiré par solvant ou par plasma,les motifs ainsi révélés dans le PS peuvent être alors transférés en utilisant ce dernier comme masque degravure. Une couche de copolymères statistiques PS-r-PMMA neutralise les affinités du PS/PMMA avecle substrat et permet l’auto-organisation.Un des problèmes majeurs est le contrôle des dimensions ; traditionnellement, le PMMA est retiré paracide acétique et le PS-r-PMMA gravé par plasma d’Ar/O2 qui aggrandit le diamètre des trous (CD)en consommant lattéralement trop de PS. Des temps de recuit acceptables pour l’Industrie donnent ausommet du masque de PS une forme de champignon induisant une dispersion importante des diamètresmesurés (~4-5 nm).Nos travaux montrent que la dispersion de CD peut être corrigée par plasma en facettant le sommetdes motifs. Dans un premier temps, un procédé de retrait du PMMA par plasma continu de H2N2 a étédéveloppé afin de s’affranchir des problèmes induits par l’acide acétique et les plasmas à base d’O2. Cecia permis de révéler des défauts d’organisation non rapportés dans la littérature à notre connaissance : desfilms de PS de quelques nanomètres peuvent aléatoirement se trouver dans le domaine du PMMA et ainsibloquer la gravure de certains cylindres. Afin de graver ces défauts sans perdre le contrôle des dimensions,un procédé composé d’un bain d’acide acétique et d’un plasma synchronisé pulsé de H2N2 à faible rapportde cycle et à forte énergie de bombardement a été mis au point. Il permet de retirer le PMMA, facetterle sommet du PS (ce qui réduit la dispersion de CD à moins de 2 nm), graver les défauts et la couche deneutralisation tout en limitant l’agrandissement des trous à moins d’un nanomètre. La dernière difficultévient des dimensions agressives et du rapport d’aspect important des trous de contact gravés. Afin delimiter la gravure latérale et la consommation des masques, des couches de passivation sont déposées surles flancs des motifs pendant la gravure mais à des échelles inférieures à 15 nm, ces couches de quelquesnanomètres sont trop épaisses et nuisent au contrôle des dimensions. Les plasmas doivent être alors moinspolymérisants et la création d’oxydes sur les flancs par ajout d’O2 doit être évitée.Enfin, les techniques de détermination des dimensions à partir d’images SEM ne sont plus assezrobustes à ces échelles. Afin d’en améliorer la robustesse, des algorithmes de reconstruction d’image etd’anti-aliasing ont été implémentés. / Shrinking transistor’s dimensions below 14 nm is so expensive that lower-cost complementary techniquessuch as Directed Self-Assembly (DSA) combined with 193 nm-lithography are currently beingdeveloped. Either organized as trenches for the FinFET’s fin or vertical cylinders for contact holes(which is our case study), Polystyrene-b-polymethylmetacrylate (PS-b-PMMA) is a well-studied blockcopolymer but introduces challenging etching issues due to the chemical similarities between the PS andPMMA blocks. The aim of this thesis is to overcome those etching challenges.In our case where PS is the dominant phase, the principle of DSA is to obtain through self-assemblya pattern of vertical cylinders of PMMA inside a mask constituted of PS. PMMA is then removed eitherby solvent or plasma, revealing the patterns in the PS mask, which will be used as an etching mask forpattern transfer. In order to allow self-assembly, a thin brush layer of random copolymers PS-r-PMMAis used to neutralize the affinity of each phase with the substrate.One of the main issues with DSA is the control of the dimensions (CD control): usually, PMMAis dissolved in acetic acid bath and the brush layer is etched by an Ar/O2 plasma which increasesdramatically the pore’s diameter (CD) by laterally etching the PS. Short duration of thermal annealingsuitable for the Industry induces some “mushroom” shape at the top of the mask which consequentlyincreases the measured CD dispersion (~ 4-5 nm).Our work shows that CD uniformity can be corrected by faceting the top of the patterns throughplasma etching. As a first step, a dry-etch process for PMMA based on H2N2 chemistry has beendeveloped in order to free ourselves from acetic-acid’s and O2-based plasma’s issues. As far as we know,the discovered kind of defects has never been reported in the literature: few nanometer-thick films madeof PS can randomly be found in the PMMA’s domain, thus delaying the etching of random cylinders. Inorder to etch those defects without loosing the CD control, an other process constituted of an acetic acidbath followed by a synchronously-pulsed H2N2 plasma at low duty cycle and high bias power has beendeveloped. This process removes PMMA, facets the top of the PS features (decreasing CD dispersionbelow 2 nm), etches both the defects mentionned above and the brush layer without increasing thepores’ diameters by more than one nanometer. One last etching challenge comes from the aggressivedimensions and the high aspect ratio of the contact holes. In order to limit the lateral etching and themask consumption overall, passivation’s layer are usually deposed on the sidewall of the features duringthe etching process, but at dimensions below 15 nm, those layers are too thick and cause a CD control lossthough they are only few-nanometer thick. The polymerization’s capacity of plasmas has to be loweredat this scale and oxidized layer’s formation by adding O2 to the plasma chemistry has to be avoided.Last but not least, the techniques based on SEM images to determine the pore’s dimensions are notrobust enough at those scales. In order to gain in robustness, image reconstruction and anti-aliasingalgorithm have been implemented.

Page generated in 0.0402 seconds