• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sequence analysis of the 16s-23s intergenic spacer regions of Flavobacterium columnare

Ford, Lorelei Melissa 09 August 2008 (has links)
The 16S, 23S, and 5S ribosomal RNA (rRNA) genes are highly conserved sequences in bacteria. For this reason, rRNA genes are often used for phylogenetic classification. On the other hand, the regions between the structural sequences, known as intergenic spacer regions (ITS), are under less evolutionary pressure to be conserved. Because they are not as highly conserved, they can be used to differentiate strains of the same bacterial specie. The purpose of this study was to evaluate the 16S-23S ITS of Flavobacterium columnare, an important pathogen of cultured fish, by comparing the 16S-23S ITS sequences from 70 isolates. We developed two PCR assays that amplify overlapping regions of one large previously identified ITS. The primers targeted the 16S sequence and isoleucine tRNA encoding sequences and the 23S sequence and alanine tRNA encoding sequences. The PCR products were cloned and sequenced. We also targeted I-CeuI restriction fragments from the ATCC type strain that were separated by pulse field gel electrophoresis and analyzed the 16S-23S ITS regions. We found that the genome of this species harbors at least 6 intergenic spacer regions that are very similar and contain the same tRNA encoding sequences. This suggests that earlier studies that used the ITS for distinguishing between strains of Flavobacterium columnare may be comparing sequences from different structural RNA operons and thus have misleading data.

Page generated in 0.0988 seconds