• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular characterization of Edwardsiella spp. and Flavobacterium columnare

Zhang, Yinfeng, January 2007 (has links) (PDF)
Thesis (Ph.D.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (ℓ. 104-128)
2

Detection of Flavobacterium Columnare in Tissues and Pond Water using Real-Time Polymerase Chain Reaction

Gibbs, Gordon Derek 11 December 2015 (has links)
Flavobacterium columnare, a Gram-negative rod-shaped bacterium, is the causative agent of columnaris disease in a variety of fish hosts but is of particular significance to the catfish industry located in the southeastern United States. Columnaris infections are a leading cause of mortalities in catfish ponds, occurring alone or in conjunction with other diseases. Typical diagnostic methods for columnaris infections involve the use of selective media following the observation of gross signs of disease. A real-time quantitative PCR (qPCR) assay to estimate the quantity of bacteria present in environmental and tissue samples was developed and validated. The genetic variability seen in F. columnare makes detection of isolates from different genomovars (genetic groups) essential to an assay for diagnostic application. Isolates from catfish generally fall into one of two different genomovars, one being virulent to catfish, while the other genomovar is thought to be largely opportunistic. The qPCR assay described herein was designed specifically to detect F. columnare isolates from the two major genomovars most often associated with farm-raised catfish. The assay was shown specific to F. columnare, regardless of genomovar, and demonstrated sensitivity consistent with similar qPCR assays. In addition, the assay provides quantitative information, estimating the bacterial loads in fish tissue and the environment. Two different applications of the assay are presented: (1) Estimate bacterial burden in fish tissue following immersion challenges to identify variation in transmission rates between channel and blue x channel hybrid catfish, and (2) Estimate the environmental burden of F. columnare in catfish ponds over the course of a single calendar year. This assay will provide an invaluable tool for researchers and diagnosticians in expanding our understanding of F. columnare and how it interacts with the host and environment.
3

Genetic and virulence diversity of Flavobacterium columnare

Soto, Esteban 11 August 2007 (has links)
Flavobacterium columnare is a freshwater fish bacterium responsible for columnaris disease, the second leading cause of mortality in pond raised catfish in the southeastern United States. Pulsedield gel electrophoresis (PFGE) is a particularly powerful tool in epidemiology and is now regarded as the gold standard for molecular typing of microorganisms. We developed methods for conducting PFGE on F. columnare, and determined its efficacy for characterizing F. columnare strains isolated from different locations in the Southeastern United States. Virulence diversity was observed in two different immersion challenge experiments conducted with 16 different isolates in channel catfish fingerlings. A direct correlation was found between the PFGE clustered groups and virulence. In summary, our results suggest that two genetic divisions of F. columnare channel catfish isolates exist, one that contains strains that are “primary” pathogens of channel catfish (Group A), and another that are “secondary” or opportunistic pathogens of catfish (Group B).
4

Isolamento, caracterização bioquímica e molecular por PCR-RFLP e análise dos polissacarídeos produzidos na formação de biofilme de Flavobacterium columnare em peixes

Sebastião, Fernanda de Alexandre [UNESP] 22 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:22Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-22Bitstream added on 2014-06-13T20:35:47Z : No. of bitstreams: 1 sebastiao_fa_me_jabo.pdf: 674003 bytes, checksum: 55712af3de8f36c8c3d3b36dce7dcbc0 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Dentre as enfermidades de importância na piscicultura, destaca-se a columnariose, cujo agente etiológico é a Flavobacterium columnare, bactéria de ampla distribuição geográfica, responsável por um elevado número de mortalidade em peixes de várias espécies, principalmente em condições intensivas de criação. Visando o melhor conhecimento desta bactéria para desenvolvimento de métodos de diagnóstico e controle da doença, os objetivos deste estudo foram isolar, caracterizar bioquímica e molecularmente por PCR-RFLP do gene 16S rDNA de F. columnare, detectar fenotipicamente a formação de cápsulas destes isolados pelo teste Agar vermelho congo, e avaliar a composição do EPS quando produzidos por meio de cromatografia líquida de alta eficiência. Ao todo foram obtidos 37 isolados e a caracterização bioquímica indica que os isolamentos são classificados como F. columnare. O filograma gerado pela técnica de PCR-RFLP mostrou três principais ramificações entre os isolados de F. columnare. Os testes comprovaram que a presença de cápsula na célula bacteriana não está diretamente relacionada à formação de biofilme, e o monossacarídeo preponderante em F. columnare é a glicose.Portanto, a utilização da PCR-RFLP para a identificação da bactéria apresentou-se como ferramenta mais rápida que as técnicas bioquímicas atuais e os dados referentes a produção de biofilme são relevantes para futuros estudos que busquem métodos enzimáticos para impedimento da aderência e formação de biofilmes destes patógenos aquáticos em sistemas de aqüicultura e consequentemente a prevenção da columnariose / Columnaris disease stands out among the illnesses of importance in fish breeding, its etiological agent is Flavobacterium columnare, which has been recognized as a worldwide pathogen, responsible for high degree of mortality in many fish species, especially in conditions of intensive breed. Looking for a better knowledge of this bacteria and aiming to develop diagnosis methods and disease control, the objectives of this study were to isolate, to biochemistry and molecularly characterize by 16S rDNA gene PCR-RFLP of F. columnare, to detect phenotipically the formation of capsules by the agar Congo red method, and to evaluate the EPS composition by high-performance liquid chromatography. There were obtained 37 isolates and the biochemistry characterization indicated that the isolates were classified as F. columnare. The phylogenetic tree generated by PCR-RFLP technique showed three main branches among the F. columnare isolates. The presence of capsule on the bacterial cells has not a direct relationship to biofilm formation, and considering its composition it was observed that the preponderant monosaccharide is glucose. Therefore, the PCR-RFLP alternative to identify this bacteria presented itself as a faster tool than actual biochemical techniques and the results regarding to biofilm production are relevant to future studies that search for enzymatic methods to abolish the adherence and biofilm formation by this aquatic pathogen in aquaculture systems, and, consequently, columnaris disease prevention
5

Plasma Pattern Recognition Receptors of Walleye (Sander vitreus M.) with an Emphasis on Mannose-binding Lectin-Like Protein and Viral Hemorrhagic Septicemia Virus

Reid, Mary Alexandra 17 August 2012 (has links)
Walleye (Sander vitreus M.) are valuable in commercial and recreational fisheries and are affected by bacterial, fungal and viral disease. Pattern recognition receptors (PRRs) are germline-encoded and constitutively expressed and bind non-self or altered-self for immune recognition. Walleye were hypothesised to have circulating PRRs that were capable of binding diverse pathogens. These PRRs were hypothesised to increase with infection, be distributed in immunologically relevant tissues and to be strain and age specific. PRR binding was measured by affinity chromatography, plasma binding assays,SDS-PAGE, Western blots, ELISA, PCR, and immunohistochemistry. ELISA and affinity chromatography assays were developed in rainbow trout (Oncorhynchus mykiss) with known PRRs. Trout ladderlectin was confirmed as a PRR binding viral hemorrhagic septicemia virus (VHSV). These techniques were adapted to walleye using Flavobacterium columnare, chitin, VHSV and Sepharose resin. A 22 kDa protein bound to F. columnare, a 17 kDa protein bound to chitin and a 34 kDa protein bound to VHSV were identified as similar to bass apolipoprotein, carp C3 and rainbow trout intelectin, respectively. PCR and 3'-RACE-PCR were used to generate nucleotide sequence to confirm identity of walleye apolipoprotein and mannose-binding lectin (MBL)-like protein from the intelectin-like sequence. Two rabbit polyclonal antibodies were raised to 34 and 67 kDa MBL amino acid sequences and used to verify MBL-like protein as a PRR for VHSV. Healthy walleye MBL-like protein plasma concentration was 7.5 ng/ml. Significant differences were found between geographically distant strains of walleye. An ELISA demonstrated that MBL-like protein had significant differences in binding affinity between multiple strains of VHSV and different viruses found in Ontario. MBL-like protein plasma levels increased with initial infection of naïve fish with waterborne and IP VHSV (107 pfu) but did not change with IP reinfection. Previous infection with VHSV significantly decreased walleye mortality. IHC of walleye shows MBL-like protein is distributed in epithelial surfaces, primarily skin, oropharynx, gill, gastrointestinal system, renal nephrons, connective tissue of gonads and plasma. There was no qualitative difference in MBL-like protein tissue distribution in healthy and VHSV-infected walleye. This is the first evidence for fish lectins binding viruses.
6

Isolamento, caracterização bioquímica e molecular por PCR-RFLP e análise dos polissacarídeos produzidos na formação de biofilme de Flavobacterium columnare em peixes /

Sebastião, Fernanda de Alexandre. January 2010 (has links)
Orientador: Manoel Victor Franco Lemos / Banca: Maria Inês Tiraboshi Ferro / Banca: Maria José Tavares Ranzani de Paiva / Resumo: Dentre as enfermidades de importância na piscicultura, destaca-se a columnariose, cujo agente etiológico é a Flavobacterium columnare, bactéria de ampla distribuição geográfica, responsável por um elevado número de mortalidade em peixes de várias espécies, principalmente em condições intensivas de criação. Visando o melhor conhecimento desta bactéria para desenvolvimento de métodos de diagnóstico e controle da doença, os objetivos deste estudo foram isolar, caracterizar bioquímica e molecularmente por PCR-RFLP do gene 16S rDNA de F. columnare, detectar fenotipicamente a formação de cápsulas destes isolados pelo teste Agar vermelho congo, e avaliar a composição do EPS quando produzidos por meio de cromatografia líquida de alta eficiência. Ao todo foram obtidos 37 isolados e a caracterização bioquímica indica que os isolamentos são classificados como F. columnare. O filograma gerado pela técnica de PCR-RFLP mostrou três principais ramificações entre os isolados de F. columnare. Os testes comprovaram que a presença de cápsula na célula bacteriana não está diretamente relacionada à formação de biofilme, e o monossacarídeo preponderante em F. columnare é a glicose.Portanto, a utilização da PCR-RFLP para a identificação da bactéria apresentou-se como ferramenta mais rápida que as técnicas bioquímicas atuais e os dados referentes a produção de biofilme são relevantes para futuros estudos que busquem métodos enzimáticos para impedimento da aderência e formação de biofilmes destes patógenos aquáticos em sistemas de aqüicultura e consequentemente a prevenção da columnariose / Abstract: Columnaris disease stands out among the illnesses of importance in fish breeding, its etiological agent is Flavobacterium columnare, which has been recognized as a worldwide pathogen, responsible for high degree of mortality in many fish species, especially in conditions of intensive breed. Looking for a better knowledge of this bacteria and aiming to develop diagnosis methods and disease control, the objectives of this study were to isolate, to biochemistry and molecularly characterize by 16S rDNA gene PCR-RFLP of F. columnare, to detect phenotipically the formation of capsules by the agar Congo red method, and to evaluate the EPS composition by high-performance liquid chromatography. There were obtained 37 isolates and the biochemistry characterization indicated that the isolates were classified as F. columnare. The phylogenetic tree generated by PCR-RFLP technique showed three main branches among the F. columnare isolates. The presence of capsule on the bacterial cells has not a direct relationship to biofilm formation, and considering its composition it was observed that the preponderant monosaccharide is glucose. Therefore, the PCR-RFLP alternative to identify this bacteria presented itself as a faster tool than actual biochemical techniques and the results regarding to biofilm production are relevant to future studies that search for enzymatic methods to abolish the adherence and biofilm formation by this aquatic pathogen in aquaculture systems, and, consequently, columnaris disease prevention / Mestre
7

Sequencing and Analysis of the Flavobacterium Columnare ATCC 49512 Genome

Tekedar, Hasan Cihad 17 May 2014 (has links)
Flavobacterium columnare is a Gram negative fish pathogen that causes columnaris disease, which infects populations of wild and cultured fish species. However, pathogenic mechanisms of F. columnare are largely unknown. The purpose of this research is to obtain the complete sequence of the F. columnare ATCC 49512 genome to advance pathogenesis research and increase our understanding of this pathogen. To accomplish this, genome sequencing by using Sanger and 454 sequencing was conducted. The sequences were assembled, gaps were filled, and the circular genome was autoannotated. The F. columnare genome size is 3.2 Mb and AT rich (68.5% AT). It contains 2,882 predicted proteins, 71 tRNA genes and five ribosomal RNA operons. More than half (57.1%) of the open reading frames have assigned function, which included chondroitin AC lyase, proteases, collagenases, and genes involved in biofilm formation, secretion systems, iron acquisition, and gliding motility.
8

Lašišų (Salmo salar L.) ir šlakių (Salmo trutta trutta L.) kolumnariozės tyrimai / Study of Columnaris Disease in Salmon (Salmo salar L.) and Trout (Salmo trutta trutta L.)

Stankus, Vytautas 05 March 2014 (has links)
Flavobacterium columnare yra gerai žinomas patogenas sukeliantis kolumnariozę, ir kurio sukeliama liga paliečia gėlavandenes žuvis: tiek akvariumines, tiek žuvivaisos įmonėse, tiek gyvenančias natūraliose gamtinėse sąlygose. Bakteriją pirmą kartą 1922 metais aprašė Herber Spencer Davis, ir jai suteikė pavadinimą, kuris vėliau kelis kartus keitėsi (Bacillus columnaris, Cytophaga columnaris, Chondrococcus columnaris, Flexibacter columnaris) kol buvo pripažintas Flavobacterium columnare pavadinimas, kuris dabar naudojamas. Jungtinėse Amerikos Valstijose ši bakterija atneša labai didžiulius nuostolius. Registruotais duomenimis 2003 m. kolumnaris liga nusinešė daugiau nei 30 milijonų JAV dolerių vien tik iš šamų pramonės. F. columnare dažniausiai pasižymi tuo, kad sukelia žiaunų nekrozę, pelekų erozijas ir žvynų pažeidimus. Išauginta ant Cytophaga agaro kolonija dažniausiai būna rizoidinio tipo, adhezyvi, gelsvos spalvos (dėl pigmento fleksirubinino). Raudonųjų Kongo dažų absorbcija – vienas labiausiai patikimiausių biocheminių testų. Taip pat egzistuoja ir kiti diagnozavimo metodai – serologiniai, molekuliniai. Šios ligos prevencijai reikia reguliariai naudoti kalio permanganatą, vario sulfatą ar kitą dezinfekcinę medžiagą, kuri naikina F. columnare bakterijas. Jei tenka gydyti – visai neseniai pasirodė tyrimai, kuriuose buvo aprašytas fagų panaudojimas. Jie pasižymi kolonijų augimą stabdančiu ar bakterijas naikinančiu poveikiu, tačiau dar reikia atlikti daugybę tyrimų norint... [toliau žr. visą tekstą] / Flavobacterium columnare is a well known worldwide pathogen, causative agent of Columnaris disease, elicting significant problems in freshwater fish including aquariums, culture places, natural surroundings. The first time the bacteria was described and named by Herber Spencer Davis. The name has changed for several times till reached the one is used now (Bacillus columnaris, Cytophaga columnaris, Chondrococcus columnaris, Flexibacter columnaris). In the industry of USA catfish this pathogen causes millions of dollars of losses. According to the statistics of the year 2003, the industry lost more than 30 millions of dollars of income. F. columnare in fish infections may cause skin lesions, fin erosions and gill necrosis, with a high degree of mortality. Cultured on Cytophaga agar grows mostly in rhizoit type very much adhesive collonies coloured in yellow due to pigment flexirubinin. One of the most revieling biochemical tests – absorbance of Congo red dye. Also it can be diagnosed by many serological and molecular assays. Preventive control should be used regularly involving potassium permanganate, copper sulphate or other desinfecant, which is available for F. columnare on the market. The latest treatment described for columnariosis is based upon phages which prevent the growth of F. columnare or kill it, but there are many studies to be done before making any conlusions. The aim of the research – to evaluate morfophysiological status and infestation with Flavobacterium... [to full text]
9

Epidemiological Study of the Factors that Influence Mortality and Economics on a Commercial Catfish Farm

Cunningham, Fred L 13 December 2014 (has links)
A Catfish Management Database (CMD) was developed to analyze data from large commercial catfish farms. The CMD was developed so that data collected by the farm could be used for management of the farm and for identifying some of the risk factors associated with important bacteria diseases. This database was designed to 1) to incorporate production data already being recorded for generating reports for use at weekly managerial meetings focused on feeding rates, feed conversion ratios, mortalities and harvesting events 2) be easily used by a catfish farmer to collect management data in order to analyze production efficiency through a series of farmer defined management reports and 3) provide the farm with easy access to management reports. Additional customized reports can be generated as requested by the farm management. The next objective of this research was to determine pond level risk factors associated with columnaris disease and Enteric Septicemia of Catfish related mortalities. The data from the CMD was used to produce two publications detailing the analysis of the data and production of a univariate and multivariate models of pond level risk factors associated with both diseases. These studies showed some commonly recorded production variables were associated with either columnaris and/or ESC associated mortalities and if monitored could help identify “at risk” ponds prior to disease outbreaks. A study was then conducted to examine the cost associated with mortality on Mississippi commercial catfish farms. The mortalities examined included ponds that had mortalities from columnaris disease, ESC and then any ponds that had mortalities from either. The cost of each disease was determined along with other factors such as pond age, feed conversion ratio and feed cost that influence the profitability of a commercial catfish farm.
10

Sequence analysis of the 16s-23s intergenic spacer regions of Flavobacterium columnare

Ford, Lorelei Melissa 09 August 2008 (has links)
The 16S, 23S, and 5S ribosomal RNA (rRNA) genes are highly conserved sequences in bacteria. For this reason, rRNA genes are often used for phylogenetic classification. On the other hand, the regions between the structural sequences, known as intergenic spacer regions (ITS), are under less evolutionary pressure to be conserved. Because they are not as highly conserved, they can be used to differentiate strains of the same bacterial specie. The purpose of this study was to evaluate the 16S-23S ITS of Flavobacterium columnare, an important pathogen of cultured fish, by comparing the 16S-23S ITS sequences from 70 isolates. We developed two PCR assays that amplify overlapping regions of one large previously identified ITS. The primers targeted the 16S sequence and isoleucine tRNA encoding sequences and the 23S sequence and alanine tRNA encoding sequences. The PCR products were cloned and sequenced. We also targeted I-CeuI restriction fragments from the ATCC type strain that were separated by pulse field gel electrophoresis and analyzed the 16S-23S ITS regions. We found that the genome of this species harbors at least 6 intergenic spacer regions that are very similar and contain the same tRNA encoding sequences. This suggests that earlier studies that used the ITS for distinguishing between strains of Flavobacterium columnare may be comparing sequences from different structural RNA operons and thus have misleading data.

Page generated in 0.0882 seconds