• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Výroba součásti se závitem / Industrialization of a threaded part

Blaise, Pierrick January 2015 (has links)
This document shows the method used to develop an innovative machining process used for manufacturing of a threaded tube.
2

Analysis of Additively Manufactured 17-4PH Stainless Steel

Coulson, Simon January 2018 (has links)
Selective laser melting of nitrogen gas atomized 17-4PH stainless results in up to 50% lower yield strength and 600% higher elongation compared to traditionally processed, wrought 17-4PH. This drastic difference in mechanical properties is commonly attributed to the presence of high volume fractions of retained austenite within the as-built microstructure. The factors leading to the increased level of retained austenite have not been clarified in the literature. Furthermore, the amount of retained austenite reported within published literature vary widely, even with the use of identical process parameters. Manufacturers of selective laser melting systems state that solution annealing and precipitation hardening will achieve traditional mechanical properties, thereby removing all retained austenite. Once again, it is not clear, how the recommended solution and precipitation treatments lead to the desired changes in microstructure. The research within this thesis establishes that there is up to 0.12wt% higher nitrogen content within additively manufactured 17-4PH, compared to traditionally manufactured 17-4PH, as a result of the powder atomization process. The increased nitrogen is able to stabilize the austenitic phase by reducing the Ms temperature below ambient temperatures. Fertiscope bulk phase analysis demonstrates that the processing atmosphere during selective laser melting cannot alter the fraction of retained austenite in the as-built material. The depression of the Ms temperature in the printed parts is confirmed by dilatometry. Due to the TRIP phenomenon, during sample preparation, it was found that the austenite would transform to 80% martensite at the surface. This transformation will greatly impact the phases detected when x-ray diffraction is used for analysis, leading to a wide variety of reported retained austenite values within literature. A mechanism based on the precipitation of nitrides during solution-treatment has been proposed to explain how heat-treatment of the printed parts can lead to a martensitic microstructure with comparable mechanical properties to those of wrought alloys. / Thesis / Master of Applied Science (MASc) / 17-4PH stainless steel is a martensitic alloy, that can be precipitation hardened when used in traditional manufacturing processes. Within a selective laser melting process, it will exhibit up to 50% lower yield strength and 600% higher elongation. This behaviour is caused by retained austenite, which is stabilized by the introduction of nitrogen during the powder atomization process. As a result, the alloy exhibits transformation induced plasticity. Existing literature states the alloy’s microstructure can be controlled by altering the selective laser melting process atmosphere or using heat treatment to achieve traditional mechanical properties. However, the production and preparation of samples generates a surface transformation which was misinterpreted as a complete bulk transformation. Therefore, the change in microstructure from altering the process atmosphere is only detectable through surface analytical techniques. It is proposed that the rapid cooling rates of SLM form a non-equilibrium state, keeping nitrogen in solution. Subsequent heat treatment allows the formation of nitrides resulting in the Ms being brought above room temperature.
3

Experiment and simulation of micro injection molding and microwave sintering / Expérimentation et simulation de micro-moulage par injection et frittage par micro-ondes

Shi, Jianjun 05 May 2014 (has links)
Procédé de moulage par injection de poudres est constitué de quatre étapes principales: la préparation des matières premières, moulage par injection, le déliantage et le frittage. Cette thèse présente les recherches sur deux aspects principaux: la micro-injection et frittage par micro -ondes. Les contributions principaux peuvent être conclues dans les quatre aspects suivants: Modification et complément de l'algorithme précédent pour la simulation du procédé de moulage par injection; L'évaluation et la mise en œuvre de l'effet de tension de surface en simulation pour micro-injection; Micro-ondes expériences de frittage de compacts basés sur l'acier inoxydable 17-4PH; Réalisation de la simulation de frittage à micro-ondes avec couplage de la multi-physique, y compris le chauffage à micro-ondes classique, le transfert de chaleur, et le supplément de modèle pour la densification de frittage de la poudre compacté / Powder Injection molding process consists off our main stages: feedstock preparation, injection molding, debinding and sintering. The thesis presents the research on two main aspects: micro injectionmolding and microwave sintering. The main contributions can be concluded in thefollowing four aspects: Modification and supplement of previous algorithm for the simulation ofinjection molding process; Evaluation and implementation of surface tension effect in simulation for micro injection; Microwave sintering experiments of compacts based on 17-4PH stainles ssteel; Realization of the microwave sintering simulation with the coupling of multi-physics,including the classic microwave heating, heat transfer, and the supplement of model for sintering densification of powder impacts

Page generated in 0.0251 seconds