• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atmospheric Circulations of Hot Jupiters as Planetary Heat Engines

Koll, Daniel D. B., Komacek, Thaddeus D. 31 January 2018 (has links)
Because of their intense incident stellar irradiation and likely tidally locked spin states, hot Jupiters are expected to have wind speeds that approach or exceed the speed of sound. In this work, we develop a theory to explain the magnitude of these winds. We model hot Jupiters as planetary heat engines and show that hot Jupiters are always less efficient than an ideal Carnot engine. Next, we demonstrate that our predicted wind speeds match those from three-dimensional numerical simulations over a broad range of parameters. Finally, we use our theory to evaluate how well different drag mechanisms can match the wind speeds observed with Doppler spectroscopy for HD 189733b and HD 209458b. We find that magnetic drag is potentially too weak to match the observations for HD 189733b, but is compatible with the observations for HD 209458b. In contrast, shear instabilities and/or shocks are compatible with both observations. Furthermore, the two mechanisms predict different wind speed trends for hotter and colder planets than currently observed. As a result, we propose that a wider range of Doppler observations could reveal multiple drag mechanisms at play across different hot Jupiters.
2

Photochimie des exoplanètes chaudes : modélisations et expériences

Venot, Olivia 06 November 2012 (has links)
Les Jupiters Chauds représentent une classe d’exoplanètes très intéressante à étudier. En effet, ces planètes géantes gazeuses, orbitant très proches de leurs étoiles (typiquement 0.05 UA) reçoivent un ux UV 10 000 fois supérieur à ce que reçoit Jupiter par exemple dans notre Système Solaire. La temprérature atmosphérique, par conséquent très élevée, est comprise entre 1000 et 3000 K. Ces températures élevées, l'importance de la dynamique et la forte irradiation UV font des atmosphères de ces planètes le site d'une chimie unique, n'ayant pas d'équivalent dans le Système Solaire [...]. / Hot Jupiters are a class of exoplanets very interesting to study. Indeed, these giant planets, orbiting very close to their star (typically 0.05 AU), receive a UV ux 10 000 times more intense that the one Jupiter receives in our Solar system. The atmospheric temperature, thus very high, ranges between 1000 and 3000 K. Because of these high temperatures, the important dynamic and strong UV irradiation, the atmospheres of these planets are the site of unique chemistry, having no equivalent in the Solar System [...]
3

Effect of stellar flares on the upper atmospheres of HD 189733b and HD 209458b

Chadney, J. M., Koskinen, T. T., Galand, M., Unruh, Y. C., Sanz-Forcada, J. 08 December 2017 (has links)
Stellar flares are a frequent occurrence on young low-mass stars around which many detected exoplanets orbit. Flares are energetic, impulsive events, and their impact on exoplanetary atmospheres needs to be taken into account when interpreting transit observations. We have developed a model to describe the upper atmosphere of extrasolar giant planets (EGPs) orbiting flaring stars. The model simulates thermal escape from the upper atmospheres of close-in EGPs. Ionisation by solar radiation and electron impact is included and photo-chemical and diffusive transport processes are simulated. This model is used to study the effect of stellar flares from the solar-like G star HD 209458 and the young K star HD 189733 on their respective planets, HD 209458b and HD 189733b. The Sun is used as a proxy for HD 209458, and is an element of Eridani, as a proxy for HD 189733. A hypothetical HD 209458b-like planet orbiting the very active M star AU Microscopii is also simulated. We find that the neutral upper atmosphere of EGPs is not significantly affected by typical flares on HD 209458 and HD 189733. Therefore, stellar flares alone would not cause large enough changes in planetary mass loss to explain the variations in HD 189733b transit depth seen in previous studies, although we show that it may be possible that an extreme stellar proton event could result in the required mass loss. Our simulations do however reveal an enhancement in electron number density in the ionosphere of these planets, the peak of which is located in the layer where stellar X-rays are absorbed. Electron densities are found to reach 2.2 to 3.5 times pre-flare levels and enhanced electron densities last from about 3 to 10 h after the onset of the flare, depending on the composition of the ionospheric layer. The strength of the flare and the width of its spectral energy distribution affect the range of altitudes in the ionosphere that see enhancements in ionisation. A large broadband continuum component in the XUV portion of the flaring spectrum in very young flare stars, such as AU Mic, results in a broad range of altitudes a ff ected in planets orbiting this star. Indeed, as well as the X-ray absorption layer, the layer in which EUV photons are absorbed is also strongly enhanced.
4

Glass rain : modelling the formation, dynamics and radiative-transport of cloud particles in hot Jupiter exoplanet atmospheres

Lee, Graham Kim Huat January 2017 (has links)
The atmospheres of exoplanets are being characterised in increasing detail by observational facilities and will be examined with even greater clarity with upcoming space based missions such as the James Webb Space Telescope (JWST) and the Wide Field InfraRed Survey Telescope (WFIRST). A major component of exoplanet atmospheres is the presence of cloud particles which produce characteristic observational signatures in transit spectra and influence the geometric albedo of exoplanets. Despite a decade of observational evidence, the formation, dynamics and radiative-transport of exoplanet atmospheric cloud particles remains an open question in the exoplanet community. In this thesis, we investigate the kinetic chemistry of cloud formation in hot Jupiter exoplanets, their effect on the atmospheric dynamics and observable properties. We use a static 1D cloud formation code to investigate the cloud formation properties of the hot Jupiter HD 189733b. We couple a time-dependent kinetic cloud formation to a 3D radiative-hydrodynamic simulation of the atmosphere of HD 189733b and investigate the dynamical properties of cloud particles in the atmosphere. We develop a 3D multiple-scattering Monte Carlo radiative-transfer code to post-process the results of the cloudy HD 189733b RHD simulation and compare the results to observational results. We find that the cloud structures of the hot Jupiter HD 189733b are likely to be highly inhomogeneous, with differences in cloud particle sizes, number density and composition with longitude, latitude and depth. Cloud structures are most divergent between the dayside and nightside faces of the planet due to the instability of silicate materials on the hotter dayside. We find that the HD 189733b simulation in post-processing is consistent with geometric albedo observations of the planet. Due to the scattering properties of the cloud particles we predict that HD 189733b will be brighter in the upcoming space missions CHaracterising ExOPlanet Satellite (CHEOPS) bandpass compared to the Transiting Exoplanet Space Survey (TESS) bandpass.

Page generated in 0.0273 seconds