• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Roles of the Ubiquitin-Proteasome System and Mono-ubiquitination in Regulating MHC class II Transcription

Bhat, Kavita Purnanda 12 February 2010 (has links)
Major Histocompatibility Complex (MHC) class II molecules are indispensable arms of the im-mune system that present extracellular antigens to CD4+T cells and initiate the adaptive immune response. MHC class II expression requires recruitment of a master regulator, the class II trans-activator (CIITA). How this master transcriptional regulator is recruited, stabilized and degraded is unknown. The 26S proteasome, a master regulator of protein degradation, is a multi-subunit complex composed of a 20S core particle capped on one or both ends by 19S regulatory particles. Previous findings have linked CIITA and MHC class II transcription to the ubiquitin proteasome system (UPS) as mono-ubiquitination of CIITA increases its transactivity whereas poly-ubiquitination targets CIITA for degradation. Increasing evidence indicates individual ATPase subunits of the 19S regulator play non-proteolytic roles in transcriptional regulation and histone modification. Our initial observations indicate proteasome inhibition decreases CIITA transac-tivity and MHC class II expression without affecting CIITA expression levels. Following cyto-kine stimulation, the 19S ATPase Sug1 associates with CIITA and with the MHC class II enhan-ceosome complex. Absence of Sug1 reduces promoter recruitment of CIITA and proteasome inhibition fails to restore CIITA binding, indicating Sug1 is required for CIITA mediated MHC class II expression. Furthermore, we identify a novel N-terminal 19S ATPase binding domain (ABD) within CIITA. The ABD of CIITA lies within the Proline/Serine/Threonine (P/S/T) re-gion of CIITA and encompasses a majority of the CIITA degron sequence. Absence of the ABD increases CIITA half-life, but blocks MHC class II surface expression, indicating that CIITA requires interaction with the 19S ATPases for both its deployment and destruction. Finally, we identify three degron proximal lysine residues, lysines (K): K315, K330 and K333, and a phosphorylation site, serine (S), S280, located within the CIITA degron, that regulate CIITA ubiquitination, stability and MHC class II expression. These are the first lysine residues identified as sites of CIITA ubiquitination that are essential for MHC class II expression. These observations increase our understanding of the role of the UPS in modulating CIITA mediated MHC class II transcription and will facilitate the development of novel therapies involving manipulation of MHC class II gene expression.
2

Role of 26S Proteasome and Regulator of G-Protein Signaling 10 in Regulating Neuroinflammation in the Central Nervous System

Maganti, Nagini 17 December 2015 (has links)
Major histocompatibility complex molecules (MHCII) are cell surface glycoproteins that present extracellular antigens to CD4+ T lymphocytes and initiate adaptive immune responses. Apart from their protective role, overexpression of MHCII contributes to autoimmune disorders where the immune system attacks our own tissues. Autoimmune diseases are characterized by self-reactive responses to autoantigens, promoting tissue damage, inflammation mediated by proinflammatory cytokines, autoreactive lymphocytes, and autoantibodies. MHCII molecules are tightly regulated at the level of transcription by Class II transactivator (CIITA). CIITA associates with an enhanceosome complex at MHCII promoters and regulates the expression of MHCII. It is thus crucial to understand the regulation of CIITA expression in order to regulate MHCII in autoimmune diseases. Our lab has shown that the 19S ATPases of the 26S proteasome associate with MHCII and CIITA promoters and play important roles in gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear. Here, we define novel roles of the 19S ATPases Sug1, S7, and S6a in expression of CIITApIV genes. These ATPases are recruited to CIITApIV promoters and coding regions, interact with the elongation factor PTEFb, and with Ser5 phosphorylated RNA Pol II. Both the generation of CIITApIV transcripts and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by knockdown of 19S ATPases. Alternatively, inflammation is also suppressed via the Regulator of G-protein signaling 10 (RGS10) in microglial cells which express high levels of RGS10 and promote homeostasis in the central nervous system. However, chronic activation of microglial cells leads to release of cytokines which cause neuroinflammation. Our investigation of roles played by RGS10 in chronically activated microglial cells indicates that RGS10 binds to promoters of IL-1β, and TNF-α and regulates these genes, while the molecular mechanism remains to be investigated. Together, our observations indicate roles for the UPS in modulating gene expression and for RGS10 in regulating proinflammatory cytokines in microglial cells, each of which provides novel therapeutic targets to combat inflammation in autoimmune and neurodegenerative diseases.

Page generated in 0.0403 seconds