• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tok látek v nestandardních procesních a energetických zařízeních / Fluid Flow in Nonstandard Process and Power Equipment

Chýlek, Martin January 2018 (has links)
Flow distribution has big importance in equipment with limited tube rows because it provides correct operation and sometimes specific flow distribution for technology purposes is needed. This thesis is focusing on flow analysis in these units using computational fluid dynamics (CFD). For analysis of such systems models with varying tube rows and varying perforated segment lengths were created. Analysis showed significant impact of flow manifold layout along with tube layout and number of tubes. Simplified 1D model using static pressure regain coefficient was created which provides much shorter computational times. Comparison of 1D and CFD models was made to determine field of their usage.
2

A Monte Carlo study of the particle mobility in crowded nearly one-dimensional systems.

Sebastian, Ahlberg January 2014 (has links)
The study of crowding effects on particle diffusion is a large subject with implications in many scientific areas. The studies span from pure theoretical calculations to experiments actually measuring the movement of proteins diffusing in a cell. Even though the subject is important and has been studied heavily there are still aspects not fully understood.   This report describes a Monte Carlo simulation approach (Gillespie algorithm) to study the effects of crowding on particle diffusion in a quasi one-dimensional system. With quasi meaning that the particles diffuses on a one-dimensional lattice but has the possibility to disassociate from the lattice and then rebind at a latter stage. Different binding strategies are considered: rebinding to the same location and randomly choosing the binding location. The focus of the study is how these strategies affects the mobility (diffusion coefficient) of a tracer particle. The main result of this thesis is a graph showing the diffusion coefficient as a function of the binding rate for different binding strategies and particle densities. We provide analytical estimates for the diffusion coefficient in the unbinding rate limits which show good agreement with the simulations. / Hur "trängsel" (från engelskans "crowding" t ex molecular crowding) påverkar diffusionsprocesser är viktigt inom många olika vetenskapliga områden. Forskningen som för tillfället utförs sträcker sig från rent teoretiska beräkningar till experiments där man kan följa enskilda proteiners rörelse i en cell. Även fast ämnet är viktig och väl undersökt finns det fortfarande många aspekter som man inte förstår till fullo. I det här examensarbetet beskrivs en Monte Carlo metod (Gillespie algoritmen) för att studera hur trängsel påverkar en partikel som diffunderar i ett "nästan" en-dimensonellt system. Det är nästan en-dimensionellt i det avsedde att partiklarna diffunderar på ett gitter men kan binda av från gittret och binda tillbaka i ett senare skedde. Olika metoder för hur partiklarna binder till gittret undersöks: Återbinding till avbindingsplatsen och slumpmässigt vald återbindingsplats. Fokus ligger på att förklara hur dessa påverkar mobiliteten (diffusionskonstanten) av en spårningspartikel (tracer particle). Resultatet är en graf som visar diffusionskonstanten för spårningspartikeln som en funktion av avbindingsfrekvens för olika bindingstrategier och partikeldensiteter. Vi ger också analytiska resultat i gränsvärdet för höga och låga avbindingstakter vilka stämmer bra överens med simuleringar.
3

Multiscale Modeling of Hemodynamics in Human Vessel Network and Its Applications in Cerebral Aneurysms

Yu, Hongtao 24 May 2018 (has links)
No description available.
4

Riser hydrodynamic study with Group B particles for Chemical Looping Combustion / Étude hydrodynamique du riser avec des particules du groupe B pour la Combustion en Boucle Chimique

Da silva Rodrigues, Sofia 04 November 2014 (has links)
La combustion en boucle chimique (CLC) est un procédé du type oxy-combustion où des particules sont utilisées pour fournir de l'oxygène à la combustion. Des études sont nécessaires pour l'extrapolation et l'optimisation du procédé CLC, fonction des propriétés des particules du groupe B et de la technologie CFB. Les études hydrodynamiques ont été faites dans un riser de 18 m de hauteur. Des profils axiaus de pression, ainsi que les profils radiaux de flux et de quantité de mouvement ont été obtenus. Trois types de particules ont été utilisées ayant un diamètre de Sauter entre 250 et 300 μm et une densité entre 2600 et 3300 kg/ m3. Un impact de la sphéricité des particules sur la perte de charge a été révélé. Dans des conditions identiques, les billes de verre génèrent des pertes de charge d'environ 50% inférieures à celles du sable. Dans la zone d'écoulement développée, la présence du régime cœur-anneau a été détectée. Un modèle hydrodynamique 1D du riser qui est à la fois fondé sur des données expérimentales et sur les équations gaz-solide Euler-Euler, a été développé. Une nouvelle corrélation pour la force de traînée moyennée sur la section est proposée. Une nouvelle corrélation des conditions limite dans la partie inférieure du riser a aussi été établie. Le modèle 1D final est en mesure de prédire la perte de charge du riser pour différentes conditions opératoires et en tenant compte des propriétés des particules, comme la densité, la taille et la forme. Une étude sur la pertinence de l'utilisation du logiciel Barracuda CPFD® pour simuler des particules du groupe B en régime de transport a été réalisée. Il a été montré que le code sous-estime la perte de charge pour le sable / Chemical Looping Combustion (CLC) is an oxy-combustion like process where particles are used to supply oxygen to combustion. Further work is still needed for extrapolation and optimization of the CLC process, concerning properties of Group B particles and CFB technology. Hydrodynamic tests were made on a 18 m tall riser. Axial pressure profiles as well as radial flux profiles and radial momentum quantity profiles were obtained. Three types of Group B particles were used with Sauter mean diameters between 250 and 300 μm and densities between 2600 and 3300 kg/m²s. An important impact of particle sphericity on riser pressure drop has been revealed. At identical conditions, glass beads present about half the pressure drop generated by sand. In the developed region of the riser, the core-annulus regime has been found. A 1D model of the riser, based on experimental results and on the Euler-Euler gas-solid equations, has been developed. Moreover, a new cross section averaged drag force correlation is presented. A new boundary condition on the bottom of the riser has been investigated. The final 1D model is capable of predicted riser pressure drop from the operating conditions and it takes into account particle properties such as density, size and shape. A study on the adequacy of the use of the commercial CFD code Barracuda to simulate risers with Group B particles was made. It was shown that the code under estimates pressure drop along the riser for sand simulations
5

1D model for flow in the pulmonary airway system

Alahmadi, Eyman Salem M. January 2012 (has links)
Voluntary coughs are used as a diagnostic tool to detect lung diseases. Understanding the mechanics of a cough is therefore crucial to accurately interpreting the test results. A cough is characterised by a dynamic compression of the airways, resulting in large flow velocities and producing transient peak expiratory flows. Existing models for pulmonary flow have one or more of the following limitations: 1) they assume quasi-steady flows, 2) they assume low speed flows, 3) they assume a symmetrical branching airway system. The main objective of this thesis is to develop a model for a cough in the branching pulmonary airway system. First, the time-dependent one-dimensional equations for flow in a compliant tube is used to simulate a cough in a single airway. Using anatomical and physiological data, the tube law coupling the fluid and airway mechanics is constructed to accurately mimic the airway behaviour in its inflated and collapsed states. Next, a novel model for air flow in an airway bifurcation is constructed. The model is the first to capture successfully subcritical and supercritical flows across the bifurcation and allows for free time evolution from one case to another. The model is investigated by simulating a cough in both symmetric and asymmetric airway bifurcations. Finally, a cough model for the complete branching airway system is developed. The model takes into account the key factors involved in a cough; namely, the compliance of the lungs and the airways, the coughing effort and the sudden opening of the glottis. The reliability of the model is assessed by comparing the model predictions with previous experimental results. The model captures the main characteristics of forced expiatory flows; namely, the flow limitation phenomenon (the flow out of the lungs becomes independent of the applied expiratory effort) and the negative effort dependence phenomenon (the flow out of the lungs decreases with increasing expiratory effort). The model also gives a good qualitative agreement with the measured values of airway resistance. The location of the collapsed airway segment during forced expiration is, however, inconsistent with previous experimental results. The effect of changing the model parameters on the model predictions is therefore discussed.
6

Mesure de pression non-invasive par imagerie cardiovasculaire et modélisation unidimensionnelle de l’aorte / Non-invasive pressure measurement using cardiovascular MRI and one-dimensional modelling of the aorta

Khalifé, Maya 12 December 2013 (has links)
L'imagerie par Résonance Magnétique permet de mesurer l'écoulement sanguin. Au niveau cardiovasculaire, elle permet d'acquérir non seulement des images anatomiques du cœur et des gros vaisseaux mais aussi des images fonctionnelles de vitesse par contraste de phase. Cette technique offre des perspectives dans l'étude de la dynamique des fluides et dans la caractérisation des artères, en particulier pour les grosses artères systémiques comme l'aorte dont le rôle est primordial dans la circulation sanguine. Par ailleurs, l'un des paramètres qui entrent en jeu dans la détermination de la fonction cardiaque et du comportement vasculaire est la pression artérielle. La méthode de référence de la mesure de pression dans l'aorte étant le cathétérisme, plusieurs méthodes combinant la modélisation à l'imagerie ont été proposées afin d'estimer un gradient de pression de façon non invasive. Ce travail de thèse propose de mesurer la pression dans un segment d'aorte grâce à un modèle 1D simplifié et en utilisant les données mesurées par IRM et un modèle 0D représentant le réseau vasculaire périphérique comme conditions aux limites. Aussi, afin d'adapter le modèle à l'aorte du patient, une loi de pression exprimant une relation entre la section aortique à la pression et basée sur la compliance a été utilisée. Cette dernière, liée à la vitesse d'onde de pouls (VOP), a été mesurée en IRM sur les ondes de vitesse.Par ailleurs, les séquences de codage de vitesse et d'accélération sont longues et ponctuées d'artéfacts dus au mouvement du patient. Une apnée est requise afin de limiter le mouvement respiratoire. Cependant, la durée de l'apnée atteint 25 à 30 secondes pour de telles séquences, ce qui est souvent impossible à tenir pour les malades. Une technique d'optimisation de séquences dynamiques par réduction du champ de vue est proposée et étudiée. La technique décrit un dépliement des régions repliées par différence complexe de deux images, l'une codée et l'autre non codée en vitesse. Cette méthode réalise une réduction de plus de 25% de la durée d'apnée. / Magnetic Resonance Imaging (MRI) is used to measure blood flow. It allows assessing not only dynamic images of the heart and the large arteries, but also functional velocity images by means of Phase Contrast. This promising technique is important for studying fluid dynamics and characterizing the arteries, especially the large systemic arteries that play a prominent role in the blood circulation. One of the parameters used for determining the cardiac function and the vascular behavior is the arterial pressure. The reference technique for measuring the aortic pressure is catheterism, but several methods combining imaging and mathematical modeling have been proposed in order to non-invasively estimate a pressure gradient. This work proposes to measure pressure in an aortic segment through a simplified 1D model using MRI measured flow and 0D model representing the peripheral vascular system as boundary conditions. To adapt the model to the aorta of a patient, a pressure law was used forming a relation between the aortic section area and pressure, based on compliance, which is linked to pulse wave velocity (PWV) estimated on MRI measured flow waves.Scan duration was optimized, as it is often a limitation during image acquisition. Velocity and acceleration sequences require a long time and may cause artifacts. Hence, they are acquired during apnea to avoid respiratory motion. However, for such acquisitions, a subject would have to hold their breath for more than 25 seconds which can pose difficulties for some patients. A technique that allows dynamic acquisition time optimization through field of view reduction was proposed and studied. The technique unfolds fold-over regions by complex difference of two images, one of which is motion encoded and the other acquired without an encoding gradient. By implementing this method, we decrease the acquisition time by more than 25%
7

Analysis and Optimization of Shrouded Horizontal Axis Wind Turbines

Khamlaj, Tariq A. January 2018 (has links)
No description available.

Page generated in 0.0606 seconds