• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inlet monitoring of a potable water supply using a sensor array

Hogben, Peter James January 2003 (has links)
Monitoring for pollutants in potable water is an area of interest and concern for water supply companies. Supply of sub-standard water can draw complaints from public and industrial customers. Water and water tainted with pollutants were used to assess the application of a non-specific chemical sensor array (eNose) to monitor for changes in the headspace generated from a flow-cell by means of statistically designed experiments. 2-chlorophenol and diesel were used to further assess trends in headspace generation during trials where different combinations of sampling parameters were applied. Field trials were conducted in accordance with the most suitable methodology determined during initial studies under laboratory conditions. The headspace is generated by bubbling nitrogen through the flow-cell containing a water sample. The liquid sample is flushed and regenerated after each sensor acquisition cycle. The resultant headspace sample is transferred to the sensor array module where the resistance of the conducting polymer sensors is monitored as they are exposed to each respective headspace sample. The change in each sensor resistance after 60 seconds of exposure is used to represent the headspace character. Subsequent acquisitions are added to a data set and then presented graphically. Sudden changes in the sensor resistance plots represent changes in water quality. The results showed that the developed apparatus and sampling methodology can determine the presence or absence of pollution in a water matrix. Laboratory analysis showed that detection levels for 2-chlorophenol and diesel were both <5 ppm in the mixed stream. Future developments should focus on increasing the sensitivity of the system by concentrating the pollutants in either the liquid or gas phase or by modifying the sampling protocol to enable sensor recognition at lower concentration levels. The sensor array could act as a screening technique to support quantitative and characterising analytical equipment at the abstraction point. Establishing a pollution alarm limit, within the bounds of acceptable system variation, would enable conventional analytical techniques to remain on standby until activated by a statistically significant change in water quality. Once established continued testing would enable alarm levels to be incorporated into a contaminant database for additional pollutant compounds and combinations of known taste and odour causing compounds.
2

Fabricação e caracterização de filmes nanoestruturados de nanotubos de carbono e polianilina para aplicação em sensores ambientais na detecção de 2-clorofenol. / -

Santos, Juliana de Souza 02 March 2012 (has links)
Made available in DSpace on 2016-06-02T19:19:56Z (GMT). No. of bitstreams: 1 SILVA_Juliana_2012.pdf: 2696605 bytes, checksum: 1cfa39bd0ca5fd455b1f19f842575224 (MD5) Previous issue date: 2012-03-02 / Organochlorine compounds exhibit high toxicity, environmental persistence and tendency to bioaccumulate. This pollutant can spread through the air and water, affecting humans and the environment. In this context, this study aimed to develop an environmental sensor capable of detecting organochlorine compounds through nanostructured films fabricated from the layer-by-layer technique. The sensory units were composed of bilayers formed from Carbon Nanotubes (CNTs), alternated with Polyaniline (PAni). This study was divided into two main stages: the first was the fabrication and characterization of thin films and the second was the application of the film as sensor for environmental control of 2-chlorophenol. In the first stage individual films were fabricated with PAni and CNTs alternated with polyelectrolytes Poly(vinyl sulfonate) (PVS) and Poly(ethyleneimine) (PEI), respectively, and mixed film of CNTs/PAni. The films were characterized by UV-vis, FTIR and Raman spectroscopy, and by scanning electron microscopy (SEM). In the second stage sensory units were immersed in a liquid system containing 2-chlorophenol at different concentrations for characterization by means of electrochemical techniques of cyclic voltammetry and square wave voltammetry. The results of the film of CNTs/PAni showed good performance as electrochemical sensors for organochlorine compounds, since using the technique of square wave voltammetry detected the presence of 2-chlorophenol concentration from 2 ppm to the current intensity increased in about the film in individual CNTs. / Os compostos organoclorados apresentam alta toxicidade, persistência ambiental e mostram tendência à bioacumulação, podendo se propagar por meio do ar e da água afetando o homem e o meio ambiente. Neste contexto, este estudo visou o desenvolvimento de um sensor ambiental capaz de detectar compostos organoclorados através de filmes nanoestruturados fabricados a partir da técnica de automontagem (do inglês, Layer-by-Layer, LbL). As unidades sensoriais foram constituídas por bicamadas formadas de Nanotubos de Carbono (CNTs), intercalados com Polianilina (PAni). Essa dissertação foi dividida em duas principais etapas; a primeira na fabricação e caracterização de filmes finos e a segunda na aplicação do filme como unidade sensorial para controle ambiental de 2- clorofenol. Na primeira etapa foram fabricados filmes individuais de PAni e CNTs alternados com polieletrólitos Poli(vinil sulfonato de sódio) (PVS) e Poli(etilenoimina) (PEI), respectivamente, e o filme misto de CNTs/PAni. Os filmes foram caracterizados por medidas espectroscópicas de UV-vis, FTIR e Raman, e microscopia eletrônica de varredura (do inglês, Scanning Electron Microscopy, SEM). Na segunda etapa as unidades sensoriais foram imersas em um sistema líquido contendo 2- clorofenol em diferentes concentrações para caracterização por meio de técnicas eletroquímicas por voltametria cíclica e voltametria de onda quadrada. Os resultados do filme misto de CNTs/PAni mostraram bom desempenho como sensores eletroquímicos para compostos organoclorados, uma vez que através da técnica de voltametria de onda quadrada detectou a presença de 2-clorofenol na concentração a partir de 2 ppm com intensidade de corrente aumentada em relação ao filme individual dos CNTs.
3

Development of a sensitive electrochemical sensor based on carbon dots and graphitic carbon nitride for the detection of 2-chlorophenol and arsenic (III) in water

Moundzounga, Theo Herman Gael 02 1900 (has links)
M. Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / The presence of organic and inorganic pollutants in aqueous environments is one of the major challenges confronting man. It is therefore important to develop sensitive, versatile and cheap techniques for their detection. Arsenic (III), 2-chlorophenol (2-CP) and sulfamethoxazole (SMX) are priority pollutants that pose health threats to humans and animals. This study was thus aimed at exploring two promising carbon nanomaterials as electrode modifiers for the electrochemical sensing of arsenic (III), 2-CP and SMX in water. Glassy carbon electrode (GCE) was modified with a nanocomposite of carbon dots (CDs) and graphitic carbon nitride (g-C3N4) and used as a sensor for the analytes in aqueous media. The CDs was prepared by a facile one-pot hydrothermal method using pine cone as the carbon source; g-C3N4 and g-C3N4/CDs nanocomposite were prepared via the microwave irradiation heating method. CDs, g-C3N4 and g-C3N4/CDs were dropped-dried on the surface of bare GCE. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the prepared materials. GCE, g-C3N4/GCE, CDs/GCE and g-C3N4/CDs/GCE electrodes were electrochemically investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) using a ferrocyanide [Fe (CN) 6]3-/4- redox probe. The current and the reversibility of the redox probes were enhanced in the presence of modifiers. The electrochemical behavior of arsenic (III), 2-CP and SMX on different electrodes (GCE, CDs/GCE, g-C3N4/GCE and g-C3N4/CDs/GCE) were investigated by differential pulse voltammetry (DPV) under optimized conditions in a phosphate buffer solution (pH 7.6, 6 and 5 for 2-CP, As (III) and SMX respectively). The results demonstrated that the g-C3N4/CDs/GCE electrode significantly enhanced the oxidation peak current of all three analytes. The detection sensitivity of the analytes was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic (III), 2-CP and SMX in water. The oxidation peak currents displayed a linear relationship to concentrations for 2-CP (0.5 - 2.5 μM, R2=0.958, n=5), arsenic (III) (2 - 10 μM R2=0.978, n=5) and SMX (0.3 - 1.3 μM R2=0.9906, n=5). The detection limits of 0.62 μM, 1.64 μM and 0.10 μM were obtained for 2-CP, arsenic and SMX, respectively. Phenol and 4-chloro-3-methyl-phenol were found to interfere with the detection of 2-CP, while, Cu2+, Zn2+, Pb2+ and Cd2+ were the only significant ions that interfered with the electrochemical detection of arsenic (III). EDTA was used as a ligand to mask the interference effects of copper, cadmium, lead and zinc on arsenic sensing. The modified electrode (g-C3N4/CDs/GCE) was used to determine arsenic, 2-CP and SMX in spiked tap and effluent water samples by the standard addition method and the results showed percentage recoveries varying from 93-118% for 2-CP, 98-100% for arsenic and 80-105% for SMX. The outcomes of this study established that the nanocomposite material represents an easy and sensitive sensing platform for the monitoring of arsenic (III), 2-CP and SMX in aqueous media.

Page generated in 0.0308 seconds