1 |
Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beadsMuchindu, Munkombwe January 2010 (has links)
<p>Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3 &minus / ) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate (PSNP-OSO3 &minus / ) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 &minus / ) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10&minus / 8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were < / 100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 &mu / A/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 &mu / M NO2 &minus / , were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 &minus / , respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors.</p>
|
2 |
Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beadsMuchindu, Munkombwe January 2010 (has links)
<p>Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3 &minus / ) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate (PSNP-OSO3 &minus / ) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 &minus / ) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10&minus / 8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were < / 100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 &mu / A/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 &mu / M NO2 &minus / , were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 &minus / , respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors.</p>
|
3 |
DETERMINATION OF THE AMINO TERMINUS OF MITOCHONDRIAL GLYOXALASE II ISOZYMES USING A PROTEOMIC APPROACHNimako, George K. 12 December 2003 (has links)
No description available.
|
Page generated in 0.0933 seconds