• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Phthalocyanines as n-Type Semiconductors for Organic Field-Effect Transistors

Zhou, Weiyi 20 October 2021 (has links)
Over the past few decades, metal phthalocyanines (MPcs) have been thoroughly investigated as active materials in organic field-effect transistors (OFETs) towards the commercialization of flexible integrated circuits and displays. One of several advantages to MPcs as building blocks for OFETs is the high degree of functionality, from which the choice of metal ion, substituents along with the phthalocyanine framework and axially bound ligands can synergistically tune the physical and self-assembly properties of the material. Recent interest has been directed to the introduction of main-group elements as the central ion of MPcs as an avenue to install both hole and electron transport properties and improve device performance. To prepare materials that are suitable to be employed as the semiconducting active layer in organic field-effect transistors, a family of novel silicon phthalocyanine derivatives was prepared. The synthesis and optoelectronic properties of those new axially disubstituted silicon phthalocyanines are detailed in this work. Axial ligand variation mainly includes alkylsiloxy derivatives. The emphasis of the current thesis, however, is on tailoring the Pc backbone, which includes replacing the four benzene units with pyrazine moieties, extending the degree of conjugation with naphthalene, and introducing substituents on their peripheral positions. Several metal-containing tetra-2,3-pyrazinoporphyrazines are also described, but their applications are limited due to the difficulty of purification. Specifically, Chapter 1 serves as a comprehensive review of main-group phthalocyanines and their use as active materials in organic field-effect transistors. In Chapter 2, silicon tetra-2,3-pyrazinoporphyrazine complexes are explored. The isosteric substitution of CH groups in Pc macrocycle for nitrogen atoms leads to an obvious hypsochromic shift in their main absorption band, and their relatively low energy levels make them promising air-stable n-type organic semiconducting materials for OFETs. The synthesis and characterization of silicon tetra(tert-butyl)-2,3-naphthalocyanine complexes are described in Chapter 3. The extension of π-conjugation leads to obvious bathochromic shifts in the main absorption band. In addition, the introduction of tert-butyl groups on the periphery of the molecule reduces the tendency of the naphthalocyanine molecules to aggregate, thereby increase their solubility. Chapter 4 covers the synthesis and characterization of zinc tetra-2,3-pyrazinoporphyrazine and cobalt tetra-2,3-pyrazinoporphyrazine, whereas more future works are expected. The fifth chapter provides a conclusion to this work, and possible future directions of the research conducted herein.
2

Material characterisation, phase transitions, electrochemical properties and possible fuel cell applications of Nd₂₋ₓPrₓCuO₄ and Nd2-x-y LayPrₓCuO₄ systems

Patabendige, Chami N. K. January 2012 (has links)
The well-known lanthanide cuprates exist in two principal forms, T and T´, which behave as p-type and n-type conductors, respectively. In order to understand the structural properties and crystal chemistry from the T to T´ phase, the Nd₁.₈₋ₓLaₓPr₀.₂CuO₄ (NLPCO) system was studied varying the La substitution ratio (0≤x≤1.8) and then characterised using high temperature X-ray powder diffraction. From analysis of the X-ray diffraction patterns obtained at room temperature, there are clearly five distinguishable regions for the NLPCO system. They are, (1) monophasic T´ solid–solution (2) two phase mixture T´ + T´´ (3) monophasic T´´solid–solution (4) two phase mixture T´´ + O and finally (5) monophasic O phase solid–solution. The T´´ form has previously been suggested as an ordered form of T´; however here we show via high temperature X-ray diffraction studies that it is a non-transformable metastable phase formed on quenching of the T phase via an orthorhombically distorted variant. Also neutron diffraction and selected area electron diffraction (SAED) studies confirmed that the T ´´phase is 4- fold Cu coordinated. The structural, magnetic and electrical properties of this NLPCO series have been investigated for the selected compositions using X-ray diffraction, magnetization measurements, thermal analysis and conductivity measurements. The aim of the second half of this work was to discover the basic high temperature electrical characteristics of Nd₂₋ₓPrₓCuO₄ and investigate how this matches with those required for components on the SOFC cathode side to identify which dopant level shows highest conductivity and whether it is stable at different temperatures. The idea was to make a new concept in SOFC cathodes and current collector development, using n-type conductors instead of p- type conductors and to try to produce a high conductivity material which is stable under the chemical and thermal stresses that exist while under load that can be used in cathode or current collector applications. The Nd₂₋ₓPrₓCuO₄ (NPCO) series has been studied over a range of dopant levels (x=0.15 - 0.25) and maximum conductivity of 86.7 Scm⁻¹ has been obtained for the composition where x = 0.25. Also NPCO shows n-type semiconductor behaviour which gives operational advantages when operating at mild oxygen deficiency. AC impedance studies have been carried out on symmetrical cells to investigate the performance of NPCO as a cathode material. These studies mainly focused on polarization resistance and the activation energies of the cells. Low Rp values and low activation energies are obtained for a composite cathode compared to pure cathode material. Two configurations of NPCO as cathode materials were tested, pre-fired and in-siu fired. Pre-fired NPCO exhibited better performance than in-situ fired NPCO. Both in-situ and pre-fired current collecting NPCO still showed lowest activation energies which suggest good catalytic activity. From all of these studies, it is evident that the praseodymium doped neodymium cuprate material shows considerable promise as a potential cathode material for solid oxide fuel cell applications.
3

Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beads

Muchindu, Munkombwe January 2010 (has links)
Philosophiae Doctor - PhD / Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate ((PSNP-OSO3) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 −) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10−8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were <100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 μA/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 μM NO2 −, were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 −; respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors. / South Africa
4

Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beads

Muchindu, Munkombwe January 2010 (has links)
<p>Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3 &minus / ) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate (PSNP-OSO3 &minus / ) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 &minus / ) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10&minus / 8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were &lt / 100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 &mu / A/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 &mu / M NO2 &minus / , were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 &minus / , respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors.</p>
5

Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beads

Muchindu, Munkombwe January 2010 (has links)
<p>Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3 &minus / ) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate (PSNP-OSO3 &minus / ) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 &minus / ) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10&minus / 8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were &lt / 100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 &mu / A/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 &mu / M NO2 &minus / , were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 &minus / , respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors.</p>

Page generated in 0.0713 seconds