• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Potential of <i>b</i>-value Variations as Earthquake Precursors for Small and Large Events

Nuannin, Paiboon January 2006 (has links)
<p>The potential of variations of <i>b-</i>values in the G-R relation, log<i>N=a-bM</i> as earthquake precursors for small events (rockbursts) in Zinkgruvan mine, Sweden and for tectonic (large) earthquakes in the Andaman-Sumatra region were investigated. </p><p>The temporal frequency-magnitude distribution, <i>b(t)</i>, of rockbursts in Zinkgruvan mine was examined using high quality data recorded during the period November 1996 to April 2004 with magnitude ranges from <i>M</i><i>w</i>= -2.4 to 2.6. A sliding time-window was applied to compute <i>b</i>-values. The windows contain 50 events and were shifted with steps of 5 events. The results indicated that <i>b</i>-values significantly drop preceding rockbursts of magnitude <i>M</i><i>w</i>≥1.6.</p><p>Temporal and spatial variations of <i>b</i>-values were also examined for tectonic earthquakes, magnitude <i>M</i><i>w</i>≥4.1, in the Andaman-Sumatra region. Earthquake data from the ISC, IDC, NEIC and HVRD earthquake catalogs for a period from 01/01/1995 to 12/26/2004 were used for analysis. Spatial variations of <i>b</i> were calculated from circular areas containing 50 events, with nodes on a 0.5° x 0.5° grid. The analysis shows that <i>b(t)</i> estimates using data from different catalogs<i> </i>are comparable and that large earthquakes are preceded by a drop in <i>b(t)</i> of about 0.3~1. The distribution of stress deduced from <i>b</i>-value mapping shows that large earthquakes occurred in the high stress, i.e. low <i>b</i>-value, areas.</p><p>Aftershock sequences of the <i>M</i><i>w</i>=9, December 26, 2004 and the <i>M</i><i>w</i>=8.7, March 28, 2005 shocks were investigated by using the same methods. Results from aftershock sequences show similar behaviour as for the large and presumed independent main events.</p><p>The observed variations of <i>b</i>-values with time and in space support the hypothesis that <i>b</i>-values have a precursory potential. The method can be used for a wide range of earthquake magnitude, from microearthquakes (<i>M</i><i>w</i><3) to giant tectonic shocks (<i>M</i><i>w</i>~9) and for both of independent shocks and aftershocks.</p>
2

The Potential of b-value Variations as Earthquake Precursors for Small and Large Events

Nuannin, Paiboon January 2006 (has links)
The potential of variations of b-values in the G-R relation, logN=a-bM as earthquake precursors for small events (rockbursts) in Zinkgruvan mine, Sweden and for tectonic (large) earthquakes in the Andaman-Sumatra region were investigated. The temporal frequency-magnitude distribution, b(t), of rockbursts in Zinkgruvan mine was examined using high quality data recorded during the period November 1996 to April 2004 with magnitude ranges from Mw= -2.4 to 2.6. A sliding time-window was applied to compute b-values. The windows contain 50 events and were shifted with steps of 5 events. The results indicated that b-values significantly drop preceding rockbursts of magnitude Mw≥1.6. Temporal and spatial variations of b-values were also examined for tectonic earthquakes, magnitude Mw≥4.1, in the Andaman-Sumatra region. Earthquake data from the ISC, IDC, NEIC and HVRD earthquake catalogs for a period from 01/01/1995 to 12/26/2004 were used for analysis. Spatial variations of b were calculated from circular areas containing 50 events, with nodes on a 0.5° x 0.5° grid. The analysis shows that b(t) estimates using data from different catalogs are comparable and that large earthquakes are preceded by a drop in b(t) of about 0.3~1. The distribution of stress deduced from b-value mapping shows that large earthquakes occurred in the high stress, i.e. low b-value, areas. Aftershock sequences of the Mw=9, December 26, 2004 and the Mw=8.7, March 28, 2005 shocks were investigated by using the same methods. Results from aftershock sequences show similar behaviour as for the large and presumed independent main events. The observed variations of b-values with time and in space support the hypothesis that b-values have a precursory potential. The method can be used for a wide range of earthquake magnitude, from microearthquakes (Mw&lt;3) to giant tectonic shocks (Mw~9) and for both of independent shocks and aftershocks.
3

Experimental and numerical studies of masonry wall panels and timber frames of low-rise structures under seismic loadings in Indonesia

Susila, Gede Adi January 2014 (has links)
Indonesia is a developing country that suffers from earthquakes and windstorms and where at least 60% of houses are non-engineered structures, built by unskilled workers using masonry and timber. The non-engineered housing units developed in urban region are also vulnerable to seismic hazard due to the use of low quality of material and constructions method. Those structures are not resistant to extreme lateral loads or ground movement and their failure during an earthquake or storm can lead to significant loss of life. This thesis is concerned with the structural performance of Indonesian low-rise buildings made of masonry and timber under lateral seismic load. The research presented includes a survey of forms of building structure and experimental, analytical and numerical work to predict the behaviour of masonry wall and traditional timber frame buildings. Experimental testing of both masonry and timber have been carried out in Indonesia to establish the quality of materials and to provide material properties for numerical simulations. The experimental study found that the strength of Indonesia-Bali clay brick masonry are below the minimum standard required for masonry structures built in seismic regions, being at least 50% lower than the requirement specified in British Standard and Eurocode-6 (BS EN 1996-1-1:2005). In contrast, Indonesian timber materials meet the strength classes specified in British Standard/Eurocode- 5 (BS EN 338:2009) in the range of strength grade D35-40 and C35).Structural tests under monotonic and cyclic loading have been conducted on building components in Indonesia, to determine the load-displacement capacity of local hand-made masonry wall panels and timber frames in order to: (1) evaluate the performance of masonry and timber frame structure, (2) investigate the dynamic behaviour of both structures, (3) observe the effect of in-plane stiffness and ductility level, and (4) examine the anchoring joint at the base of timber frame that resists the overturning moment. From these tests, the structural ductility was found to be less than two which is below the requirement of the relevant guidelines from the Federal Emergency Management Agency, USA (FEMA-306). It was also observed that the lateral stiffness of masonry wall is much higher than the equivalent timber frame of the same height and length. The experimental value of stiffness of the masonry wall panel was found to be one-twelfth of the recommended values given in FEMA-356 and the Canadian Building code. The masonry wall provides relatively low displacement compared to the large displacement of the timber frame at the full capacity level of lateral load, with structural framing members of the latter remaining intact. The weak point of the timber frame is the mechanical joint and the capacity of slip joint governs the lateral load capacity of the whole frame. Detailed numerical models of the experimental specimens were setup in Abaqus using three-dimensional solid elements. Cohesive elements were used to simulate the mortar behaviour, exhibiting cracking and the associated physical separation of the elements. Appropriate contact definitions were used where relevant, especially for the timber frame joints. A range of available material plasticity models were reviewed: Drucker-Prager, Crystalline Plasticity, and Cohesive Damage model. It was found that the combination of Crystalline Plasticity model for the brick unit and timber, and the Cohesive Damage model for the mortar is capable of simulating the experimental load-displacement behaviour fairly accurately. The validated numerical models have been used to (1) predict the lateral load capacity, (2) determine the cracking load and patterns, (3) carry out a detailed parametric study by changing the geometric and material properties different to the experimental specimens. The numerical models were used to assess different strengthening measures such as using bamboo as reinforcement in the masonry walls for a complete single storey, and a two-storey houses including openings for doors and windows. The traditional footing of the timber structures was analysed using Abaqus and was found to be an excellent base isolation system which partly explains the survival of those structures in the past earthquakes. The experimental and numerical results have finally been used to develop a design guideline for new construction as well as recommendations for retrofitting of existing structures for improved performance under seismic lateral load.

Page generated in 0.0451 seconds