• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 272
  • Tagged with
  • 279
  • 279
  • 279
  • 272
  • 272
  • 272
  • 272
  • 272
  • 201
  • 196
  • 196
  • 196
  • 196
  • 52
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

The ecology of two New Zealand opisthobranch molluscs

Willan, R. C. (Richard Cardew) January 1979 (has links)
An intertidal population of the anaspidean Aplysia dactylomela Rang was followed for three consecutive years at the Leigh Marine Reserve, North Auckland, New Zealand. Field assessments were made of recruitment, growth (by recapture of tagged individuals), density, crawling rate, gonad index and mortality. These data allowed monthly estimates of the entire population within the entire study area (2.76 ha) to be made. Complementary laboratory studies investigated acceptable foods and an energy budget including data on energy of the food, growth rates, egestion, respiration and assimilation efficiency were also obtained in the laboratory. In conjunction with these studies, field work on the algal food of A. dactylomela (species of Laurencia) elucidated the entities present, their separate yearly changes in biomass and the causes. From this information, data on food requirements for A. dactylomela.ha-1 month-1 are contrasted with standing crop estimates for Laurencia spp. in the same units to permit consideration of the theoretical grazing effects of A. dactylomela. Several lines of evidence show this environment to be suboptimal for A. dactylomela. storms account for the greatest mortality, but some losses are due to predation by the asteroid Coscinasterias calamaria (Gray). Few individuals reach reproductive maturity and the population is not self-recruiting. An intertidal population of a second opisthobranch, the Cephalaspidean Haminoea zelandiae (Gray in Dieffenbach) was followed for three consecutive years at Motukaraka Island, Hauraki Gulf, New Zealand. Field determinations of growth, annual abundance and reproductive cycles were made. The cryptogamic flora at Motukaraka Island has been characterised and annual patterns of cover and distribution presented for five major seasonal components. The relationship between Haminoea zelandiae and these algae is considered. Additional studies on two less-common anaspideans were carried out. Field data on breeding, growth and density are given for Aplysia parvula Mörch which exists in separate, spatially-isolated intertidal and subtidal populations at Goat Island Bay. For these two populations differences exist in diet, colouration, size distribution, growth and survivorship. The intertidal habitat is marginal whereas the subtidal is close to being optimal. Bursatella leachii Blainville shows variable annual recruitment to the cyanophyte Lyngbya majuscula intertidally at Motukaraka Island. Growth rates have been determined for field and laboratory populations. In the field a deliberate offshore migration takes place whilst L. majuscula is still abundant. Speculations on the possibilities and causes for migrations amongst opisthobranchs are discussed. A taxonomic revision of the New Zealand Anaspidea follows as an appendix. There are eight sea hares authentically recorded for New Zealand: Aplysia (Pruvotaplysia) parvula Mörch 1863; A. (Varria) dactylomela Rang 1828; A. (V.) keraudreni Rang 1828; (V.) extraordinaria (Allan 1932); A. (Aplysia) juliana (Quoy & Gaimard 1832); Bursatella leachii Blainville 1817; Stylocheilus longicauda (Quoy & Gaimard 1825); Dolabrifera dolabrifera (Cuvier 1817). For each species a complete synonymy is given as well as full description, locality records and discussion.
162

The ecology of two New Zealand opisthobranch molluscs

Willan, R. C. (Richard Cardew) January 1979 (has links)
An intertidal population of the anaspidean Aplysia dactylomela Rang was followed for three consecutive years at the Leigh Marine Reserve, North Auckland, New Zealand. Field assessments were made of recruitment, growth (by recapture of tagged individuals), density, crawling rate, gonad index and mortality. These data allowed monthly estimates of the entire population within the entire study area (2.76 ha) to be made. Complementary laboratory studies investigated acceptable foods and an energy budget including data on energy of the food, growth rates, egestion, respiration and assimilation efficiency were also obtained in the laboratory. In conjunction with these studies, field work on the algal food of A. dactylomela (species of Laurencia) elucidated the entities present, their separate yearly changes in biomass and the causes. From this information, data on food requirements for A. dactylomela.ha-1 month-1 are contrasted with standing crop estimates for Laurencia spp. in the same units to permit consideration of the theoretical grazing effects of A. dactylomela. Several lines of evidence show this environment to be suboptimal for A. dactylomela. storms account for the greatest mortality, but some losses are due to predation by the asteroid Coscinasterias calamaria (Gray). Few individuals reach reproductive maturity and the population is not self-recruiting. An intertidal population of a second opisthobranch, the Cephalaspidean Haminoea zelandiae (Gray in Dieffenbach) was followed for three consecutive years at Motukaraka Island, Hauraki Gulf, New Zealand. Field determinations of growth, annual abundance and reproductive cycles were made. The cryptogamic flora at Motukaraka Island has been characterised and annual patterns of cover and distribution presented for five major seasonal components. The relationship between Haminoea zelandiae and these algae is considered. Additional studies on two less-common anaspideans were carried out. Field data on breeding, growth and density are given for Aplysia parvula Mörch which exists in separate, spatially-isolated intertidal and subtidal populations at Goat Island Bay. For these two populations differences exist in diet, colouration, size distribution, growth and survivorship. The intertidal habitat is marginal whereas the subtidal is close to being optimal. Bursatella leachii Blainville shows variable annual recruitment to the cyanophyte Lyngbya majuscula intertidally at Motukaraka Island. Growth rates have been determined for field and laboratory populations. In the field a deliberate offshore migration takes place whilst L. majuscula is still abundant. Speculations on the possibilities and causes for migrations amongst opisthobranchs are discussed. A taxonomic revision of the New Zealand Anaspidea follows as an appendix. There are eight sea hares authentically recorded for New Zealand: Aplysia (Pruvotaplysia) parvula Mörch 1863; A. (Varria) dactylomela Rang 1828; A. (V.) keraudreni Rang 1828; (V.) extraordinaria (Allan 1932); A. (Aplysia) juliana (Quoy & Gaimard 1832); Bursatella leachii Blainville 1817; Stylocheilus longicauda (Quoy & Gaimard 1825); Dolabrifera dolabrifera (Cuvier 1817). For each species a complete synonymy is given as well as full description, locality records and discussion.
163

Palynological investigations into the early Quaternary and late Tertiary vegetation and climate of west Auckland, New Zealand

Byrami, Mairie January 2003 (has links)
This thesis presents a detailed late Tertiary and early Quaternary pollen record from two c. 40 m long sedimentary cores (the Patiki cores) from west Auckland. The cores consist of slightly to highly carbonaceous clays, with a thick sand incursion at mid-depth. The sediments below the sand incursion are aged through palynostratigraphy as mid-late Pliocene (Hautawan). The sediments above the sand incursion have numerous interbedded tephras, and are aged through a combination of Isothermal Plateau Fission Track dating, palaeomagnetism and orbital tuning to the marine oxygen isotope record as 1.0 – 1.4 Ma (MIS 28 - 45, Marahauan substage). The Tertiary pollen record portrays regional vegetation assemblages of extinct Nothofagus brassii-type species and modern-day podocarps, with local modern-day oligotrophic mire assemblages. A cool climatic phase is indicated by a period of dominance of an extinct member of the Proteaceae. However, the duration of this interval cannot be determined due to a lack of numerical age control for the record. The Quaternary pollen record consists of mostly extant pollen types. It shows multiple compositional shifts from Nothofagus-dominated to conifer-dominated regional vegetation, with local oligotrophic mire vegetation except for a fully aquatic phase at mid-depth (MIS 35). The primary axis score curve of a detrended correspondence analysis (DCA) of the pollen record was correlated to the marine isotope record, and shows that the Nothofagus-dominated intervals correspond to cool climate stages, while the conifer-dominated intervals correspond to warm stages. The strongest cool stage maximum is indicated at 12 - 13 m depth (MIS 34), where the vegetation consists of Fuscospora, Prumnopitys taxifolia and heath shrubs. The strongest warm stage maximum is indicated at c. 9 m depth (MIS 31) where the vegetation consists of Dacrydium forest. Astronomically forced climate change is an important driving force behind vegetation composition changes portrayed in the Quaternary pollen record. The majority of warm stage maxima inferred in the pollen record (conifer-dominated intervals) coincide with periods of maximum obliquity, and vice versa for inferred cool stage maxima (Nothofagus-dominated intervals). The modulating effect of eccentricity on precession is influential on the pollen record during MIS 31 and 34. The relationship between selected climate indicator taxa and calculated insolation values indicates that reduced seasonality in Auckland during warm climate stages favours Agathis, Dacrydium, Phyllocladus and Halocarpus, while increased seasonality during cool climate stages favours Nothofagus ‘fusca'-type, Nothofagus menziesii, and Prumnopitys taxifolia. In both situations the trees are probably responding to a combination of changes in mean global temperatures and seasonality, and reacting according to their own adaptive responses to astronomically driven climate change. The Quaternary pollen record contains plant mixtures that do not occur in New Zealand today, for example Agathis australis with Nothofagus menziesii, and Halocarpus bidwillii / biformis. The climate was probably cooler than it is in Auckland today, but never as cold as the last glacial maximum in Auckland when grasslands were present. Under more equable climatic conditions, with less extreme glacial and interglacial cycles, populations of comparably 'warm' and 'cool' climate taxa were probably able to shift throughout the region and mixed to a greater extent than is currently observed. The overall vegetation response to climate change (particularly above MIS 36) is analogous to that recorded in northern New Zealand in the late Pleistocene, and supports a negligible change in climatic preference of the main canopy species since the early Quaternary. The phytosociological idiosynchracies in the pollen record are not inconsistent with the known tolerance limits of the taxa involved, or with the individualistic nature of vegetation composition.
164

The New Zealand common dolphin (Delphinus sp.) : identity, ecology and conservation : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Zoology, Massey University, Auckland, New Zealand

Stockin, Karen A January 2008 (has links)
Common dolphins (genus Delphinus) are poorly understood within New Zealand waters. Prior to this study, most information relating to the taxonomy, population structure, diet and pollutant loads of this genus relied upon untested assumptions. Furthermore, factors affecting the occurrence, demographics and habitat use of common dolphins in the Hauraki Gulf remained unknown. This lack of empirical data has resulted in the inadequate recognition and management of New Zealand Delphinus. Inappropriately classified by the New Zealand Threat Classification System, the anthropogenic impacts that affect this genus have clearly been overlooked. The present study examines behaviour of common dolphins in the Hauraki Gulf and details analyses undertaken on tissue samples collected from around New Zealand. Results detailed here challenge many of the untested assumptions about this genus within New Zealand waters. The taxonomy of New Zealand common dolphins was assessed using 92 samples analysed for 577 base pairs (bps) of the mtDNA control region (D-loop). New Zealand samples were compared with 177 published sequences from eight other populations from around the world. New Zealand Delphinus exhibited a high genetic variability, sharing haplotypes with both short- (D. delphis) and long-beaked (D. capensis) populations. Indeed, the New Zealand population showed significant genetic differentiation when compared with most other populations world-wide. Furthermore, intrapopulation analyses revealed significant genetic differentiation between Hauraki Gulf individuals and other common dolphins sampled within New Zealand waters. Results suggest habitat choice and site fidelity may play a role in shaping the fragmented population structure of New Zealand Delphinus. Data relating to the occurrence and demographics of common dolphins in the Hauraki Gulf region were collected during boat-based surveys between February 2002 and January 2005. In total, 719 independent encounters, involving one to > 300 common dolphins were recorded. Dolphin presence was significantly affected by month, latitude and depth. Group size varied significantly by month, season, depth, sea surface temperature (SST) and latitude, and was highly skewed towards smaller groups comprising fewer than 50 animals. Calves were observed throughout the year but were most prevalent in the austral summer months of December and January. Group composition was significantly affected by month, season, depth and SST. The yearround occurrence and social organisation of Delphinus in Hauraki Gulf waters suggest this region is an important nursery and potential calving area. The effects of diel, season, depth, sea surface temperature, and group size and composition on dolphin behaviour were investigated using activity budgets. Foraging and social were the most and least frequently observed behaviours, respectively. A correlation between group size and behaviour was evident, although behaviour did not vary with the composition of dolphin groups. Resting, milling and socialising animals were more frequently observed in smaller groups. Foraging behaviour was prevalent in both small and large groups, suggesting foraging plasticity exists within this population. Behaviour differed between single- and multi-species groups, with foraging more frequent in mixed-species aggregations, indicating the primary mechanism for association is likely prey-related. Stomach contents analysed for forty-two stranded and eleven commercially by-caught individuals collected from around North Island, New Zealand between 1997 and 2006, revealed arrow squid (Nototodarus spp.), jack mackerel (Trachurus spp.) and anchovy (Engraulis australis) as the most prevalent prey. Stranded individuals and dolphins bycaught within neritic waters fed on both neritic and oceanic prey. Moreover, a mixed prey composition was evident in the diet of common dolphins by-caught in oceanic waters, suggesting inshore/offshore movements of New Zealand Delphinus on a diel basis. Additionally, prey differences were also evident in the stomach contents of common dolphins sampled from within the Hauraki Gulf. Trace elements, polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticide levels were determined in five stranded and fourteen by-caught Delphinus sampled from around New Zealand between 1999 and 2005. Generally, levels of trace elements were low. However, concentrations of OC pesticides were similar in range to those previously reported for Hector’s (Cephalorhyncus hectori) and common bottlenose dolphins (Tursiops truncatus). Organochlorine pesticides dieldrin, hexachlorobenzene (HCB), o,p’-DDT and p,p’-DDE were present at the highest concentrations. Markov chain models were used to assess the impact of tourism activities on Delphinus within the Hauraki Gulf. Foraging and resting bouts were significantly disrupted by boat interactions. Both the duration of bouts and the time spent in these two behavioural states decreased during boat interactions. Additionally, foraging dolphins took significantly longer to return to their initial behavioural state in the presence of a tour boat. Impacts identified are similar to those previously reported for the common bottlenose dolphin, a coastal species typically considered to be more susceptible to cumulative anthropogenic impacts. Data presented here reveal the nature and apparent susceptibility of New Zealand common dolphins to human-induced impacts, namely fisheries by-catch, pollution and tourism. This in conjunction with taxonomic uncertainty, lack of abundance estimates and the year-round use of inshore waters for feeding, clearly warrants immediate attention from managers. Furthermore, the current threat classification of New Zealand Delphinus should be reconsidered in light of population uncertainties, and in view of the susceptibly to human-induced impacts revealed by the present study.
165

The New Zealand common dolphin (Delphinus sp.) : identity, ecology and conservation : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Zoology, Massey University, Auckland, New Zealand

Stockin, Karen A January 2008 (has links)
Common dolphins (genus Delphinus) are poorly understood within New Zealand waters. Prior to this study, most information relating to the taxonomy, population structure, diet and pollutant loads of this genus relied upon untested assumptions. Furthermore, factors affecting the occurrence, demographics and habitat use of common dolphins in the Hauraki Gulf remained unknown. This lack of empirical data has resulted in the inadequate recognition and management of New Zealand Delphinus. Inappropriately classified by the New Zealand Threat Classification System, the anthropogenic impacts that affect this genus have clearly been overlooked. The present study examines behaviour of common dolphins in the Hauraki Gulf and details analyses undertaken on tissue samples collected from around New Zealand. Results detailed here challenge many of the untested assumptions about this genus within New Zealand waters. The taxonomy of New Zealand common dolphins was assessed using 92 samples analysed for 577 base pairs (bps) of the mtDNA control region (D-loop). New Zealand samples were compared with 177 published sequences from eight other populations from around the world. New Zealand Delphinus exhibited a high genetic variability, sharing haplotypes with both short- (D. delphis) and long-beaked (D. capensis) populations. Indeed, the New Zealand population showed significant genetic differentiation when compared with most other populations world-wide. Furthermore, intrapopulation analyses revealed significant genetic differentiation between Hauraki Gulf individuals and other common dolphins sampled within New Zealand waters. Results suggest habitat choice and site fidelity may play a role in shaping the fragmented population structure of New Zealand Delphinus. Data relating to the occurrence and demographics of common dolphins in the Hauraki Gulf region were collected during boat-based surveys between February 2002 and January 2005. In total, 719 independent encounters, involving one to > 300 common dolphins were recorded. Dolphin presence was significantly affected by month, latitude and depth. Group size varied significantly by month, season, depth, sea surface temperature (SST) and latitude, and was highly skewed towards smaller groups comprising fewer than 50 animals. Calves were observed throughout the year but were most prevalent in the austral summer months of December and January. Group composition was significantly affected by month, season, depth and SST. The yearround occurrence and social organisation of Delphinus in Hauraki Gulf waters suggest this region is an important nursery and potential calving area. The effects of diel, season, depth, sea surface temperature, and group size and composition on dolphin behaviour were investigated using activity budgets. Foraging and social were the most and least frequently observed behaviours, respectively. A correlation between group size and behaviour was evident, although behaviour did not vary with the composition of dolphin groups. Resting, milling and socialising animals were more frequently observed in smaller groups. Foraging behaviour was prevalent in both small and large groups, suggesting foraging plasticity exists within this population. Behaviour differed between single- and multi-species groups, with foraging more frequent in mixed-species aggregations, indicating the primary mechanism for association is likely prey-related. Stomach contents analysed for forty-two stranded and eleven commercially by-caught individuals collected from around North Island, New Zealand between 1997 and 2006, revealed arrow squid (Nototodarus spp.), jack mackerel (Trachurus spp.) and anchovy (Engraulis australis) as the most prevalent prey. Stranded individuals and dolphins bycaught within neritic waters fed on both neritic and oceanic prey. Moreover, a mixed prey composition was evident in the diet of common dolphins by-caught in oceanic waters, suggesting inshore/offshore movements of New Zealand Delphinus on a diel basis. Additionally, prey differences were also evident in the stomach contents of common dolphins sampled from within the Hauraki Gulf. Trace elements, polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticide levels were determined in five stranded and fourteen by-caught Delphinus sampled from around New Zealand between 1999 and 2005. Generally, levels of trace elements were low. However, concentrations of OC pesticides were similar in range to those previously reported for Hector’s (Cephalorhyncus hectori) and common bottlenose dolphins (Tursiops truncatus). Organochlorine pesticides dieldrin, hexachlorobenzene (HCB), o,p’-DDT and p,p’-DDE were present at the highest concentrations. Markov chain models were used to assess the impact of tourism activities on Delphinus within the Hauraki Gulf. Foraging and resting bouts were significantly disrupted by boat interactions. Both the duration of bouts and the time spent in these two behavioural states decreased during boat interactions. Additionally, foraging dolphins took significantly longer to return to their initial behavioural state in the presence of a tour boat. Impacts identified are similar to those previously reported for the common bottlenose dolphin, a coastal species typically considered to be more susceptible to cumulative anthropogenic impacts. Data presented here reveal the nature and apparent susceptibility of New Zealand common dolphins to human-induced impacts, namely fisheries by-catch, pollution and tourism. This in conjunction with taxonomic uncertainty, lack of abundance estimates and the year-round use of inshore waters for feeding, clearly warrants immediate attention from managers. Furthermore, the current threat classification of New Zealand Delphinus should be reconsidered in light of population uncertainties, and in view of the susceptibly to human-induced impacts revealed by the present study.
166

The New Zealand common dolphin (Delphinus sp.) : identity, ecology and conservation : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Zoology, Massey University, Auckland, New Zealand

Stockin, Karen A January 2008 (has links)
Common dolphins (genus Delphinus) are poorly understood within New Zealand waters. Prior to this study, most information relating to the taxonomy, population structure, diet and pollutant loads of this genus relied upon untested assumptions. Furthermore, factors affecting the occurrence, demographics and habitat use of common dolphins in the Hauraki Gulf remained unknown. This lack of empirical data has resulted in the inadequate recognition and management of New Zealand Delphinus. Inappropriately classified by the New Zealand Threat Classification System, the anthropogenic impacts that affect this genus have clearly been overlooked. The present study examines behaviour of common dolphins in the Hauraki Gulf and details analyses undertaken on tissue samples collected from around New Zealand. Results detailed here challenge many of the untested assumptions about this genus within New Zealand waters. The taxonomy of New Zealand common dolphins was assessed using 92 samples analysed for 577 base pairs (bps) of the mtDNA control region (D-loop). New Zealand samples were compared with 177 published sequences from eight other populations from around the world. New Zealand Delphinus exhibited a high genetic variability, sharing haplotypes with both short- (D. delphis) and long-beaked (D. capensis) populations. Indeed, the New Zealand population showed significant genetic differentiation when compared with most other populations world-wide. Furthermore, intrapopulation analyses revealed significant genetic differentiation between Hauraki Gulf individuals and other common dolphins sampled within New Zealand waters. Results suggest habitat choice and site fidelity may play a role in shaping the fragmented population structure of New Zealand Delphinus. Data relating to the occurrence and demographics of common dolphins in the Hauraki Gulf region were collected during boat-based surveys between February 2002 and January 2005. In total, 719 independent encounters, involving one to > 300 common dolphins were recorded. Dolphin presence was significantly affected by month, latitude and depth. Group size varied significantly by month, season, depth, sea surface temperature (SST) and latitude, and was highly skewed towards smaller groups comprising fewer than 50 animals. Calves were observed throughout the year but were most prevalent in the austral summer months of December and January. Group composition was significantly affected by month, season, depth and SST. The yearround occurrence and social organisation of Delphinus in Hauraki Gulf waters suggest this region is an important nursery and potential calving area. The effects of diel, season, depth, sea surface temperature, and group size and composition on dolphin behaviour were investigated using activity budgets. Foraging and social were the most and least frequently observed behaviours, respectively. A correlation between group size and behaviour was evident, although behaviour did not vary with the composition of dolphin groups. Resting, milling and socialising animals were more frequently observed in smaller groups. Foraging behaviour was prevalent in both small and large groups, suggesting foraging plasticity exists within this population. Behaviour differed between single- and multi-species groups, with foraging more frequent in mixed-species aggregations, indicating the primary mechanism for association is likely prey-related. Stomach contents analysed for forty-two stranded and eleven commercially by-caught individuals collected from around North Island, New Zealand between 1997 and 2006, revealed arrow squid (Nototodarus spp.), jack mackerel (Trachurus spp.) and anchovy (Engraulis australis) as the most prevalent prey. Stranded individuals and dolphins bycaught within neritic waters fed on both neritic and oceanic prey. Moreover, a mixed prey composition was evident in the diet of common dolphins by-caught in oceanic waters, suggesting inshore/offshore movements of New Zealand Delphinus on a diel basis. Additionally, prey differences were also evident in the stomach contents of common dolphins sampled from within the Hauraki Gulf. Trace elements, polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticide levels were determined in five stranded and fourteen by-caught Delphinus sampled from around New Zealand between 1999 and 2005. Generally, levels of trace elements were low. However, concentrations of OC pesticides were similar in range to those previously reported for Hector’s (Cephalorhyncus hectori) and common bottlenose dolphins (Tursiops truncatus). Organochlorine pesticides dieldrin, hexachlorobenzene (HCB), o,p’-DDT and p,p’-DDE were present at the highest concentrations. Markov chain models were used to assess the impact of tourism activities on Delphinus within the Hauraki Gulf. Foraging and resting bouts were significantly disrupted by boat interactions. Both the duration of bouts and the time spent in these two behavioural states decreased during boat interactions. Additionally, foraging dolphins took significantly longer to return to their initial behavioural state in the presence of a tour boat. Impacts identified are similar to those previously reported for the common bottlenose dolphin, a coastal species typically considered to be more susceptible to cumulative anthropogenic impacts. Data presented here reveal the nature and apparent susceptibility of New Zealand common dolphins to human-induced impacts, namely fisheries by-catch, pollution and tourism. This in conjunction with taxonomic uncertainty, lack of abundance estimates and the year-round use of inshore waters for feeding, clearly warrants immediate attention from managers. Furthermore, the current threat classification of New Zealand Delphinus should be reconsidered in light of population uncertainties, and in view of the susceptibly to human-induced impacts revealed by the present study.
167

The New Zealand common dolphin (Delphinus sp.) : identity, ecology and conservation : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Zoology, Massey University, Auckland, New Zealand

Stockin, Karen A January 2008 (has links)
Common dolphins (genus Delphinus) are poorly understood within New Zealand waters. Prior to this study, most information relating to the taxonomy, population structure, diet and pollutant loads of this genus relied upon untested assumptions. Furthermore, factors affecting the occurrence, demographics and habitat use of common dolphins in the Hauraki Gulf remained unknown. This lack of empirical data has resulted in the inadequate recognition and management of New Zealand Delphinus. Inappropriately classified by the New Zealand Threat Classification System, the anthropogenic impacts that affect this genus have clearly been overlooked. The present study examines behaviour of common dolphins in the Hauraki Gulf and details analyses undertaken on tissue samples collected from around New Zealand. Results detailed here challenge many of the untested assumptions about this genus within New Zealand waters. The taxonomy of New Zealand common dolphins was assessed using 92 samples analysed for 577 base pairs (bps) of the mtDNA control region (D-loop). New Zealand samples were compared with 177 published sequences from eight other populations from around the world. New Zealand Delphinus exhibited a high genetic variability, sharing haplotypes with both short- (D. delphis) and long-beaked (D. capensis) populations. Indeed, the New Zealand population showed significant genetic differentiation when compared with most other populations world-wide. Furthermore, intrapopulation analyses revealed significant genetic differentiation between Hauraki Gulf individuals and other common dolphins sampled within New Zealand waters. Results suggest habitat choice and site fidelity may play a role in shaping the fragmented population structure of New Zealand Delphinus. Data relating to the occurrence and demographics of common dolphins in the Hauraki Gulf region were collected during boat-based surveys between February 2002 and January 2005. In total, 719 independent encounters, involving one to > 300 common dolphins were recorded. Dolphin presence was significantly affected by month, latitude and depth. Group size varied significantly by month, season, depth, sea surface temperature (SST) and latitude, and was highly skewed towards smaller groups comprising fewer than 50 animals. Calves were observed throughout the year but were most prevalent in the austral summer months of December and January. Group composition was significantly affected by month, season, depth and SST. The yearround occurrence and social organisation of Delphinus in Hauraki Gulf waters suggest this region is an important nursery and potential calving area. The effects of diel, season, depth, sea surface temperature, and group size and composition on dolphin behaviour were investigated using activity budgets. Foraging and social were the most and least frequently observed behaviours, respectively. A correlation between group size and behaviour was evident, although behaviour did not vary with the composition of dolphin groups. Resting, milling and socialising animals were more frequently observed in smaller groups. Foraging behaviour was prevalent in both small and large groups, suggesting foraging plasticity exists within this population. Behaviour differed between single- and multi-species groups, with foraging more frequent in mixed-species aggregations, indicating the primary mechanism for association is likely prey-related. Stomach contents analysed for forty-two stranded and eleven commercially by-caught individuals collected from around North Island, New Zealand between 1997 and 2006, revealed arrow squid (Nototodarus spp.), jack mackerel (Trachurus spp.) and anchovy (Engraulis australis) as the most prevalent prey. Stranded individuals and dolphins bycaught within neritic waters fed on both neritic and oceanic prey. Moreover, a mixed prey composition was evident in the diet of common dolphins by-caught in oceanic waters, suggesting inshore/offshore movements of New Zealand Delphinus on a diel basis. Additionally, prey differences were also evident in the stomach contents of common dolphins sampled from within the Hauraki Gulf. Trace elements, polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticide levels were determined in five stranded and fourteen by-caught Delphinus sampled from around New Zealand between 1999 and 2005. Generally, levels of trace elements were low. However, concentrations of OC pesticides were similar in range to those previously reported for Hector’s (Cephalorhyncus hectori) and common bottlenose dolphins (Tursiops truncatus). Organochlorine pesticides dieldrin, hexachlorobenzene (HCB), o,p’-DDT and p,p’-DDE were present at the highest concentrations. Markov chain models were used to assess the impact of tourism activities on Delphinus within the Hauraki Gulf. Foraging and resting bouts were significantly disrupted by boat interactions. Both the duration of bouts and the time spent in these two behavioural states decreased during boat interactions. Additionally, foraging dolphins took significantly longer to return to their initial behavioural state in the presence of a tour boat. Impacts identified are similar to those previously reported for the common bottlenose dolphin, a coastal species typically considered to be more susceptible to cumulative anthropogenic impacts. Data presented here reveal the nature and apparent susceptibility of New Zealand common dolphins to human-induced impacts, namely fisheries by-catch, pollution and tourism. This in conjunction with taxonomic uncertainty, lack of abundance estimates and the year-round use of inshore waters for feeding, clearly warrants immediate attention from managers. Furthermore, the current threat classification of New Zealand Delphinus should be reconsidered in light of population uncertainties, and in view of the susceptibly to human-induced impacts revealed by the present study.
168

Small stream ecosystems and irrigation : an ecological assessment of water abstraction impacts : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Palmerston North, New Zealand

Dewson, Zoë Spence January 2007 (has links)
Content removed due to copy right restriction: Dewson, Z.S., Death, R.G. & James, A.B.W. (2003) The effects of water abstractions on invertebrate communities in four small North Island streams. New Zealand natural Sciences 28, 51-65. / Small streams are often used for small-scale water abstractions, but the effects of these water abstractions on the instream environment, invertebrate communities and ecosystem functioning of small permanent streams is poorly understood. This research extends current knowledge by surveying existing water abstractions and completing flow manipulation experiments in the field. Reduced discharge often decreases water velocity, water depth, and wetted channel width and can increase sedimentation, modify the thermal regime and alter water chemistry. In a survey of sites upstream and downstream of existing water abstractions, I found that downstream sites had higher densities of invertebrates, but fewer taxa sensitive to low water quality compared with upstream sites. There were greater differences in physicochemical characteristics such as velocity and conductivity and in invertebrate communities between upstream and downstream sites on streams where a larger proportion of total discharge was abstracted. Using before-after, control-impact (BACI) designed experiments, weirs and diversions were created to experimentally decrease discharge by over 85% in each ot three small streams, ranging from pristine to low water quality. The response of invertebrates to short-term (one-month) discharge reduction was to accumulate in the decreased available area, increasing local invertebrate density. After a year of reduced flow, the density of invertebrates and percentage of mayflies, stoneflies and caddisflies decreased at the pristine site, whereas only taxonomic richness decreased at the mildly polluted stream. Reduced discharge had no affect on the invertebrate community at the stream with the lowest water quality. Reduced discharge had little influence on leaf decomposition rates, but distances travelled by released coarse particulate organic matter (CPOM) increased with increasing discharge. The effects of reduced discharge on primary production were not consistent between streams. Overall, the severity (magnitude/duration) of flow reduction appeared to influence invertebrate responses to water abstraction although the outcomes of water abstraction were dependent on the invertebrate assemblage present in each stream.
169

The ecology of two New Zealand opisthobranch molluscs

Willan, R. C. (Richard Cardew) January 1979 (has links)
An intertidal population of the anaspidean Aplysia dactylomela Rang was followed for three consecutive years at the Leigh Marine Reserve, North Auckland, New Zealand. Field assessments were made of recruitment, growth (by recapture of tagged individuals), density, crawling rate, gonad index and mortality. These data allowed monthly estimates of the entire population within the entire study area (2.76 ha) to be made. Complementary laboratory studies investigated acceptable foods and an energy budget including data on energy of the food, growth rates, egestion, respiration and assimilation efficiency were also obtained in the laboratory. In conjunction with these studies, field work on the algal food of A. dactylomela (species of Laurencia) elucidated the entities present, their separate yearly changes in biomass and the causes. From this information, data on food requirements for A. dactylomela.ha-1 month-1 are contrasted with standing crop estimates for Laurencia spp. in the same units to permit consideration of the theoretical grazing effects of A. dactylomela. Several lines of evidence show this environment to be suboptimal for A. dactylomela. storms account for the greatest mortality, but some losses are due to predation by the asteroid Coscinasterias calamaria (Gray). Few individuals reach reproductive maturity and the population is not self-recruiting. An intertidal population of a second opisthobranch, the Cephalaspidean Haminoea zelandiae (Gray in Dieffenbach) was followed for three consecutive years at Motukaraka Island, Hauraki Gulf, New Zealand. Field determinations of growth, annual abundance and reproductive cycles were made. The cryptogamic flora at Motukaraka Island has been characterised and annual patterns of cover and distribution presented for five major seasonal components. The relationship between Haminoea zelandiae and these algae is considered. Additional studies on two less-common anaspideans were carried out. Field data on breeding, growth and density are given for Aplysia parvula Mörch which exists in separate, spatially-isolated intertidal and subtidal populations at Goat Island Bay. For these two populations differences exist in diet, colouration, size distribution, growth and survivorship. The intertidal habitat is marginal whereas the subtidal is close to being optimal. Bursatella leachii Blainville shows variable annual recruitment to the cyanophyte Lyngbya majuscula intertidally at Motukaraka Island. Growth rates have been determined for field and laboratory populations. In the field a deliberate offshore migration takes place whilst L. majuscula is still abundant. Speculations on the possibilities and causes for migrations amongst opisthobranchs are discussed. A taxonomic revision of the New Zealand Anaspidea follows as an appendix. There are eight sea hares authentically recorded for New Zealand: Aplysia (Pruvotaplysia) parvula Mörch 1863; A. (Varria) dactylomela Rang 1828; A. (V.) keraudreni Rang 1828; (V.) extraordinaria (Allan 1932); A. (Aplysia) juliana (Quoy & Gaimard 1832); Bursatella leachii Blainville 1817; Stylocheilus longicauda (Quoy & Gaimard 1825); Dolabrifera dolabrifera (Cuvier 1817). For each species a complete synonymy is given as well as full description, locality records and discussion.
170

Palynological investigations into the early Quaternary and late Tertiary vegetation and climate of west Auckland, New Zealand

Byrami, Mairie January 2003 (has links)
This thesis presents a detailed late Tertiary and early Quaternary pollen record from two c. 40 m long sedimentary cores (the Patiki cores) from west Auckland. The cores consist of slightly to highly carbonaceous clays, with a thick sand incursion at mid-depth. The sediments below the sand incursion are aged through palynostratigraphy as mid-late Pliocene (Hautawan). The sediments above the sand incursion have numerous interbedded tephras, and are aged through a combination of Isothermal Plateau Fission Track dating, palaeomagnetism and orbital tuning to the marine oxygen isotope record as 1.0 – 1.4 Ma (MIS 28 - 45, Marahauan substage). The Tertiary pollen record portrays regional vegetation assemblages of extinct Nothofagus brassii-type species and modern-day podocarps, with local modern-day oligotrophic mire assemblages. A cool climatic phase is indicated by a period of dominance of an extinct member of the Proteaceae. However, the duration of this interval cannot be determined due to a lack of numerical age control for the record. The Quaternary pollen record consists of mostly extant pollen types. It shows multiple compositional shifts from Nothofagus-dominated to conifer-dominated regional vegetation, with local oligotrophic mire vegetation except for a fully aquatic phase at mid-depth (MIS 35). The primary axis score curve of a detrended correspondence analysis (DCA) of the pollen record was correlated to the marine isotope record, and shows that the Nothofagus-dominated intervals correspond to cool climate stages, while the conifer-dominated intervals correspond to warm stages. The strongest cool stage maximum is indicated at 12 - 13 m depth (MIS 34), where the vegetation consists of Fuscospora, Prumnopitys taxifolia and heath shrubs. The strongest warm stage maximum is indicated at c. 9 m depth (MIS 31) where the vegetation consists of Dacrydium forest. Astronomically forced climate change is an important driving force behind vegetation composition changes portrayed in the Quaternary pollen record. The majority of warm stage maxima inferred in the pollen record (conifer-dominated intervals) coincide with periods of maximum obliquity, and vice versa for inferred cool stage maxima (Nothofagus-dominated intervals). The modulating effect of eccentricity on precession is influential on the pollen record during MIS 31 and 34. The relationship between selected climate indicator taxa and calculated insolation values indicates that reduced seasonality in Auckland during warm climate stages favours Agathis, Dacrydium, Phyllocladus and Halocarpus, while increased seasonality during cool climate stages favours Nothofagus ‘fusca'-type, Nothofagus menziesii, and Prumnopitys taxifolia. In both situations the trees are probably responding to a combination of changes in mean global temperatures and seasonality, and reacting according to their own adaptive responses to astronomically driven climate change. The Quaternary pollen record contains plant mixtures that do not occur in New Zealand today, for example Agathis australis with Nothofagus menziesii, and Halocarpus bidwillii / biformis. The climate was probably cooler than it is in Auckland today, but never as cold as the last glacial maximum in Auckland when grasslands were present. Under more equable climatic conditions, with less extreme glacial and interglacial cycles, populations of comparably 'warm' and 'cool' climate taxa were probably able to shift throughout the region and mixed to a greater extent than is currently observed. The overall vegetation response to climate change (particularly above MIS 36) is analogous to that recorded in northern New Zealand in the late Pleistocene, and supports a negligible change in climatic preference of the main canopy species since the early Quaternary. The phytosociological idiosynchracies in the pollen record are not inconsistent with the known tolerance limits of the taxa involved, or with the individualistic nature of vegetation composition.

Page generated in 0.3417 seconds