• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • Tagged with
  • 87
  • 87
  • 87
  • 84
  • 84
  • 84
  • 84
  • 84
  • 84
  • 28
  • 27
  • 16
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The virtualMe : a knowledge acquisition framework : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in Information Systems at Massey University, Palmerston North, New Zealand

Verhaart, Michael Henry January 2008 (has links)
Throughout life, we continuously accumulate data, information and knowledge. The ability to recall much of this accumulated knowledge commonly deteriorates with time, though some forms part of what is referred to as tacit knowledge. In the context of education, students access and interact with a teacher’s knowledge in order to create their own, and may have their own data, information and knowledge that could be added to teacher’s knowledge for everyone’s benefit. The realization that students can contribute to enhancing personal knowledge is an important cornerstone in developing a mentor (teacher, tutor and facilitator) focused knowledge system. The research presented in this thesis discusses an integrated framework that manages an individual’s personal data, information and knowledge and enables it to be enhanced by others, in the context of a blended teaching and learning environment. Existing related models, structures, systems and current practices are discussed. The core outcomes of this thesis include: • the virtualMe framework that can be utilized when developing Web based teaching and learning systems; • the sniplet content model that can be used as the basis for sharing information and knowledge; • an annotation framework used to manage knowledge acquisition; and • a multimedia object (MMO) model that: o allows for related media artefacts to be intuitively grouped in a logical collection; o includes a meta-data schema that encompasses other metadata structures, and manages context and referencing; and o includes a model allowing component parts to be reaggregated if they are separated. The virtualMe framework provides the ability to retain context while transferring the content from one person to another and from one place to another. The framework retains the content’s original context and then allows the receiver to customise the content and metadata so that the content becomes that person’s knowledge. A mechanism has been created for such contextual transfer of content (context retained by the metadata).
82

Statistical frameworks and contemporary Māori development

Feary, Mark S. January 2008 (has links)
Māori have entered a period of development that, more than ever before, requires them to explore complex options and make careful decisions about the way forward. This complexity stems from three particular areas. First, from having essentially two sets of rights, as New Zealanders and as Māori, and being active in the struggle to retain those rights. Second, from trying to define and determine development pathways that are consistent with their traditional Māori values, and which align with their desire to participate in and enjoy a modern New Zealand and a global society. Third, from attempting development within a political and societal environment that is governed by a different and dominant culture. Māori, historically and contemporarily, have a culture that leads them to very different views of the world and development pathways than pakeha New Zealanders (D. Marsden, 1994, p. 697). Despite concerted effort and mis placed belief the Māori world view has survived and is being adopted by Māori youth. The Māori worldview sometimes collides with the view of the governing pakeha culture of New Zealand, which values rights, assets and behaviours differently. Despite these differences and the complexities it remains important to measure progress and inform debate about best practice and future options. In this regard, statistical information is crucial, and is generally recognised as one of the currencies of development (World Summit of the Information Society, 2003). Māori increasingly desire to measure and be informed about the feasibility and progress of their development choices in a way that is relevant to their values and culture. Where a Māori view of reality is not present there is a high risk that decisions and actions will reflect a different worldview, will fail to deal with cultural complexities, and ultimately will not deliver the intended development outcomes.
83

The benefits and barriers to GIS for Māori

Pacey, H. A. January 2005 (has links)
A Geographic Information System visually communicates both spatial and temporal analyses and has been available for at least twenty years in New Zealand. Using a Kaupapa Māori Research framework, this research investigates the benefits and barriers for Māori if they were to adopt GIS to assist their development outcomes. Internationally, indigenous peoples who have adopted GIS have reported they have derived significant cultural development benefits, including the preservation and continuity of traditional knowledge and culture. As Māori development continues to expand in an increasing array of corporate, scientific, management and cultural arenas, the level of intensity required to keep abreast of developments has also expanded. GIS has been used by some roopū to assist their contemporary Māori development opportunities; has been suggested as a cost effective method for spatial research for Waitangi Tribunal claims; has supported and facilitated complex textual and oral evidence, and has also been used to assist negotiation and empowerment at both central and local government level. While many successful uses are attributed to GIS projects, there are also precautionary calls made from practitioners regarding the obstacles they have encountered. Overall, whilst traditional knowledge and contemporary technology has been beneficially fused together, in some instances hidden or unforeseen consequences have impeded or imperilled seamless uptake of this new technology. Challenges to the establishment of a GIS range from the theoretical (mapping cultural heritage) to the practical (access to data) to the pragmatic (costs and resources). The multiple issues inherent in mapping cultural heritage, indigenous cartography and, in particular, the current lack of intellectual property rights protection measures, are also potential barriers to successful, long-term integration of GIS into the tribal development matrix. The key impediments to GIS establishment identified by surveyed roopū were lack of information and human resources, and prioritisation over more critical factors affecting tangata whenua. Respondents also indicated they would utilise GIS if the infrastructure was in place and the cost of establishment decreased. Given the large amount of resources to be invested into GIS, and the opportunity to establish safe practices to ensure continuity of the GIS, it is prudent to make informed decisions prior to investment. As an applied piece of Kaupapa Māori research, a tangible outcome in the form of an establishment Guide is presented. Written in a deliberately novice-friendly manner, the Guide traverses fundamental issues surrounding the establishment of a GIS including investment costs and establishment processes.
84

Getting evidence to and from general practice consultations for cardiovascular risk management using computerised decision support

Wells, Linda Susan Mary January 2009 (has links)
Abstract Background Cardiovascular disease (CVD) has an enormous impact on the lives and health of New Zealanders. There is substantial epidemiological evidence that supports identifying people at high risk of CVD and treating them with lifestyle and drug-based interventions. If fully implemented, this targeted high risk approach could reduce future CVD events by over 50%. Recent studies have shown that a formal CVD risk assessment to the systematically identify high risk patients is rarely done in routine New Zealand general practice and audits of CVD risk management have shown large evidence-practice gaps. The CVD risk prediction score recommended by New Zealand guidelines for identifying high CVD risk patients was derived from the US Framingham Heart Study using data collected between the 1960s and 1980s. This score has only modest prediction accuracy and there are particular concerns about it’s validity for New Zealand sub-populations such as high risk ethnic groups or people with diabetes. Aims The overall aims of this thesis were to investigate the potential of a computerised decision support system (CDSS) to improve the assessment and management of CVD risk in New Zealand general practice while simultaneously developing a sustainable cohort study that could be used for validating and improving CVD risk prediction scores and related research. Methods An environmental scan of the New Zealand health care setting’s readiness to support a CDSS was conducted .The epidemiological evidence was reviewed to assess the effect of decision support systems on the quality of health care and the types and functionality of systems most likely to be successful. This was followed by a focused systematic review of randomised trials evaluating the impact of CDSS on CVD risk assessment and management practices and patient CVD outcomes in primary care. A web-based CDSS (PREDICT) was collaboratively developed. This rules-based provider-initiated system with audit and feedback and referral functionalities was fully integrated with general practice electronic medical records in a number of primary health organisations (PHOs). The evidence-based content was derived from national CVD and diabetes guidelines. When clinicians used PREDICT at the time of a consultation, treatment recommendations tailored to the patient’s CVD and diabetes risk profile were delivered to support decision-making within seconds. Simultaneously, the patient’s CVD risk profiles were securely stored on a central server. With PHO permission, anonymised patient data were linked via encrypted patient National Health Index numbers to national death and hospitalisation data. Three analytical studies using these data are described in this thesis. The first evaluated changes in GP risk assessment practice following implementation of PREDICT; the second investigated patterns of use of the CDSS by GPs and practice nurses; and the third describes the emerging PREDICT cohort and a preliminary validation of risk prediction scores. Results Given the rapid development of organised primary care since the 1990’s, the high degree of general practice computerisation and the New Zealand policy (health, informatics, privacy) environment, the introduction of a CDSS into the primary care setting was deemed feasible. The evidence for the impact of CDSS in general has been moderately favourable in terms of improving desired practice. Of the randomised trials of CDSS for assessing or managing CVD risk, about two-thirds reported improvements in provider processes and two-fifths reported some improvements in intermediate patient outcomes. No adverse effects were reported. Since 2002, the PREDICT CDSS has been implemented progressively in PHOs within Northland and the three Auckland regional District Health Board catchments, covering a population of 1.5 million. A before-after audit conducted in three large PHOs showed that CVD risk documentation increased four fold after the implementation of PREDICT. To date, the PREDICT dataset includes around 63,000 risk assessments conducted on a cohort of over 48,000 people by over 1000 general practitioners and practice nurses. This cohort has been followed from baseline for a median of 2.12 years. During that time 2655 people died or were hospitalised with a CVD event. Analyses showed that the original Framingham risk score was reasonably well calibrated overall but underestimated risk in high risk ethnic groups. Discrimination was only modest (AUC 0.701). An adjusted Framingham score, recommended by the New Zealand Guideline Group (NZGG) overestimated 5-year event rates by around 4-7%, in effect lowering the threshold for drug therapy to about 10% 5-year predicted CVD risk. The NZGG adjusted score (AUC 0.676) was less discriminating than the Framingham score and over-adjusted for high risk ethnic groups. For the cohort aged 30-74 years, the NZGG-recommended CVD risk management strategy identified almost half of the population as eligible for lifestyle management +/- drug therapy and this group generated 82% of all CVD events. In contrast the original Framingham score classified less than one-third of the cohort as eligible for individualised management and this group generated 71% of the events that occurred during follow-up. Implications This research project has demonstrated that a CDSS tool can be successfully implemented on a large scale in New Zealand general practice. It has assisted practitioners to improve the assessment and management of CVD at the time of patient consultation. Simultaneously, PREDICT has cost-effectively generated one of the largest cohorts of Māori and non-Māori ever assembled in New Zealand. As the cohort grows, new CVD risk prediction scores will be able to be developed for many New Zealand sub-populations. It will also provide clinicians and policy makers with the information needed to determine the trade-offs between the resources required to manage increasing proportions of the populations and the likely impact of management on preventing CVD events.
85

Getting evidence to and from general practice consultations for cardiovascular risk management using computerised decision support

Wells, Linda Susan Mary January 2009 (has links)
Abstract Background Cardiovascular disease (CVD) has an enormous impact on the lives and health of New Zealanders. There is substantial epidemiological evidence that supports identifying people at high risk of CVD and treating them with lifestyle and drug-based interventions. If fully implemented, this targeted high risk approach could reduce future CVD events by over 50%. Recent studies have shown that a formal CVD risk assessment to the systematically identify high risk patients is rarely done in routine New Zealand general practice and audits of CVD risk management have shown large evidence-practice gaps. The CVD risk prediction score recommended by New Zealand guidelines for identifying high CVD risk patients was derived from the US Framingham Heart Study using data collected between the 1960s and 1980s. This score has only modest prediction accuracy and there are particular concerns about it’s validity for New Zealand sub-populations such as high risk ethnic groups or people with diabetes. Aims The overall aims of this thesis were to investigate the potential of a computerised decision support system (CDSS) to improve the assessment and management of CVD risk in New Zealand general practice while simultaneously developing a sustainable cohort study that could be used for validating and improving CVD risk prediction scores and related research. Methods An environmental scan of the New Zealand health care setting’s readiness to support a CDSS was conducted .The epidemiological evidence was reviewed to assess the effect of decision support systems on the quality of health care and the types and functionality of systems most likely to be successful. This was followed by a focused systematic review of randomised trials evaluating the impact of CDSS on CVD risk assessment and management practices and patient CVD outcomes in primary care. A web-based CDSS (PREDICT) was collaboratively developed. This rules-based provider-initiated system with audit and feedback and referral functionalities was fully integrated with general practice electronic medical records in a number of primary health organisations (PHOs). The evidence-based content was derived from national CVD and diabetes guidelines. When clinicians used PREDICT at the time of a consultation, treatment recommendations tailored to the patient’s CVD and diabetes risk profile were delivered to support decision-making within seconds. Simultaneously, the patient’s CVD risk profiles were securely stored on a central server. With PHO permission, anonymised patient data were linked via encrypted patient National Health Index numbers to national death and hospitalisation data. Three analytical studies using these data are described in this thesis. The first evaluated changes in GP risk assessment practice following implementation of PREDICT; the second investigated patterns of use of the CDSS by GPs and practice nurses; and the third describes the emerging PREDICT cohort and a preliminary validation of risk prediction scores. Results Given the rapid development of organised primary care since the 1990’s, the high degree of general practice computerisation and the New Zealand policy (health, informatics, privacy) environment, the introduction of a CDSS into the primary care setting was deemed feasible. The evidence for the impact of CDSS in general has been moderately favourable in terms of improving desired practice. Of the randomised trials of CDSS for assessing or managing CVD risk, about two-thirds reported improvements in provider processes and two-fifths reported some improvements in intermediate patient outcomes. No adverse effects were reported. Since 2002, the PREDICT CDSS has been implemented progressively in PHOs within Northland and the three Auckland regional District Health Board catchments, covering a population of 1.5 million. A before-after audit conducted in three large PHOs showed that CVD risk documentation increased four fold after the implementation of PREDICT. To date, the PREDICT dataset includes around 63,000 risk assessments conducted on a cohort of over 48,000 people by over 1000 general practitioners and practice nurses. This cohort has been followed from baseline for a median of 2.12 years. During that time 2655 people died or were hospitalised with a CVD event. Analyses showed that the original Framingham risk score was reasonably well calibrated overall but underestimated risk in high risk ethnic groups. Discrimination was only modest (AUC 0.701). An adjusted Framingham score, recommended by the New Zealand Guideline Group (NZGG) overestimated 5-year event rates by around 4-7%, in effect lowering the threshold for drug therapy to about 10% 5-year predicted CVD risk. The NZGG adjusted score (AUC 0.676) was less discriminating than the Framingham score and over-adjusted for high risk ethnic groups. For the cohort aged 30-74 years, the NZGG-recommended CVD risk management strategy identified almost half of the population as eligible for lifestyle management +/- drug therapy and this group generated 82% of all CVD events. In contrast the original Framingham score classified less than one-third of the cohort as eligible for individualised management and this group generated 71% of the events that occurred during follow-up. Implications This research project has demonstrated that a CDSS tool can be successfully implemented on a large scale in New Zealand general practice. It has assisted practitioners to improve the assessment and management of CVD at the time of patient consultation. Simultaneously, PREDICT has cost-effectively generated one of the largest cohorts of Māori and non-Māori ever assembled in New Zealand. As the cohort grows, new CVD risk prediction scores will be able to be developed for many New Zealand sub-populations. It will also provide clinicians and policy makers with the information needed to determine the trade-offs between the resources required to manage increasing proportions of the populations and the likely impact of management on preventing CVD events.
86

Getting evidence to and from general practice consultations for cardiovascular risk management using computerised decision support

Wells, Linda Susan Mary January 2009 (has links)
Abstract Background Cardiovascular disease (CVD) has an enormous impact on the lives and health of New Zealanders. There is substantial epidemiological evidence that supports identifying people at high risk of CVD and treating them with lifestyle and drug-based interventions. If fully implemented, this targeted high risk approach could reduce future CVD events by over 50%. Recent studies have shown that a formal CVD risk assessment to the systematically identify high risk patients is rarely done in routine New Zealand general practice and audits of CVD risk management have shown large evidence-practice gaps. The CVD risk prediction score recommended by New Zealand guidelines for identifying high CVD risk patients was derived from the US Framingham Heart Study using data collected between the 1960s and 1980s. This score has only modest prediction accuracy and there are particular concerns about it’s validity for New Zealand sub-populations such as high risk ethnic groups or people with diabetes. Aims The overall aims of this thesis were to investigate the potential of a computerised decision support system (CDSS) to improve the assessment and management of CVD risk in New Zealand general practice while simultaneously developing a sustainable cohort study that could be used for validating and improving CVD risk prediction scores and related research. Methods An environmental scan of the New Zealand health care setting’s readiness to support a CDSS was conducted .The epidemiological evidence was reviewed to assess the effect of decision support systems on the quality of health care and the types and functionality of systems most likely to be successful. This was followed by a focused systematic review of randomised trials evaluating the impact of CDSS on CVD risk assessment and management practices and patient CVD outcomes in primary care. A web-based CDSS (PREDICT) was collaboratively developed. This rules-based provider-initiated system with audit and feedback and referral functionalities was fully integrated with general practice electronic medical records in a number of primary health organisations (PHOs). The evidence-based content was derived from national CVD and diabetes guidelines. When clinicians used PREDICT at the time of a consultation, treatment recommendations tailored to the patient’s CVD and diabetes risk profile were delivered to support decision-making within seconds. Simultaneously, the patient’s CVD risk profiles were securely stored on a central server. With PHO permission, anonymised patient data were linked via encrypted patient National Health Index numbers to national death and hospitalisation data. Three analytical studies using these data are described in this thesis. The first evaluated changes in GP risk assessment practice following implementation of PREDICT; the second investigated patterns of use of the CDSS by GPs and practice nurses; and the third describes the emerging PREDICT cohort and a preliminary validation of risk prediction scores. Results Given the rapid development of organised primary care since the 1990’s, the high degree of general practice computerisation and the New Zealand policy (health, informatics, privacy) environment, the introduction of a CDSS into the primary care setting was deemed feasible. The evidence for the impact of CDSS in general has been moderately favourable in terms of improving desired practice. Of the randomised trials of CDSS for assessing or managing CVD risk, about two-thirds reported improvements in provider processes and two-fifths reported some improvements in intermediate patient outcomes. No adverse effects were reported. Since 2002, the PREDICT CDSS has been implemented progressively in PHOs within Northland and the three Auckland regional District Health Board catchments, covering a population of 1.5 million. A before-after audit conducted in three large PHOs showed that CVD risk documentation increased four fold after the implementation of PREDICT. To date, the PREDICT dataset includes around 63,000 risk assessments conducted on a cohort of over 48,000 people by over 1000 general practitioners and practice nurses. This cohort has been followed from baseline for a median of 2.12 years. During that time 2655 people died or were hospitalised with a CVD event. Analyses showed that the original Framingham risk score was reasonably well calibrated overall but underestimated risk in high risk ethnic groups. Discrimination was only modest (AUC 0.701). An adjusted Framingham score, recommended by the New Zealand Guideline Group (NZGG) overestimated 5-year event rates by around 4-7%, in effect lowering the threshold for drug therapy to about 10% 5-year predicted CVD risk. The NZGG adjusted score (AUC 0.676) was less discriminating than the Framingham score and over-adjusted for high risk ethnic groups. For the cohort aged 30-74 years, the NZGG-recommended CVD risk management strategy identified almost half of the population as eligible for lifestyle management +/- drug therapy and this group generated 82% of all CVD events. In contrast the original Framingham score classified less than one-third of the cohort as eligible for individualised management and this group generated 71% of the events that occurred during follow-up. Implications This research project has demonstrated that a CDSS tool can be successfully implemented on a large scale in New Zealand general practice. It has assisted practitioners to improve the assessment and management of CVD at the time of patient consultation. Simultaneously, PREDICT has cost-effectively generated one of the largest cohorts of Māori and non-Māori ever assembled in New Zealand. As the cohort grows, new CVD risk prediction scores will be able to be developed for many New Zealand sub-populations. It will also provide clinicians and policy makers with the information needed to determine the trade-offs between the resources required to manage increasing proportions of the populations and the likely impact of management on preventing CVD events.
87

Getting evidence to and from general practice consultations for cardiovascular risk management using computerised decision support

Wells, Linda Susan Mary January 2009 (has links)
Abstract Background Cardiovascular disease (CVD) has an enormous impact on the lives and health of New Zealanders. There is substantial epidemiological evidence that supports identifying people at high risk of CVD and treating them with lifestyle and drug-based interventions. If fully implemented, this targeted high risk approach could reduce future CVD events by over 50%. Recent studies have shown that a formal CVD risk assessment to the systematically identify high risk patients is rarely done in routine New Zealand general practice and audits of CVD risk management have shown large evidence-practice gaps. The CVD risk prediction score recommended by New Zealand guidelines for identifying high CVD risk patients was derived from the US Framingham Heart Study using data collected between the 1960s and 1980s. This score has only modest prediction accuracy and there are particular concerns about it’s validity for New Zealand sub-populations such as high risk ethnic groups or people with diabetes. Aims The overall aims of this thesis were to investigate the potential of a computerised decision support system (CDSS) to improve the assessment and management of CVD risk in New Zealand general practice while simultaneously developing a sustainable cohort study that could be used for validating and improving CVD risk prediction scores and related research. Methods An environmental scan of the New Zealand health care setting’s readiness to support a CDSS was conducted .The epidemiological evidence was reviewed to assess the effect of decision support systems on the quality of health care and the types and functionality of systems most likely to be successful. This was followed by a focused systematic review of randomised trials evaluating the impact of CDSS on CVD risk assessment and management practices and patient CVD outcomes in primary care. A web-based CDSS (PREDICT) was collaboratively developed. This rules-based provider-initiated system with audit and feedback and referral functionalities was fully integrated with general practice electronic medical records in a number of primary health organisations (PHOs). The evidence-based content was derived from national CVD and diabetes guidelines. When clinicians used PREDICT at the time of a consultation, treatment recommendations tailored to the patient’s CVD and diabetes risk profile were delivered to support decision-making within seconds. Simultaneously, the patient’s CVD risk profiles were securely stored on a central server. With PHO permission, anonymised patient data were linked via encrypted patient National Health Index numbers to national death and hospitalisation data. Three analytical studies using these data are described in this thesis. The first evaluated changes in GP risk assessment practice following implementation of PREDICT; the second investigated patterns of use of the CDSS by GPs and practice nurses; and the third describes the emerging PREDICT cohort and a preliminary validation of risk prediction scores. Results Given the rapid development of organised primary care since the 1990’s, the high degree of general practice computerisation and the New Zealand policy (health, informatics, privacy) environment, the introduction of a CDSS into the primary care setting was deemed feasible. The evidence for the impact of CDSS in general has been moderately favourable in terms of improving desired practice. Of the randomised trials of CDSS for assessing or managing CVD risk, about two-thirds reported improvements in provider processes and two-fifths reported some improvements in intermediate patient outcomes. No adverse effects were reported. Since 2002, the PREDICT CDSS has been implemented progressively in PHOs within Northland and the three Auckland regional District Health Board catchments, covering a population of 1.5 million. A before-after audit conducted in three large PHOs showed that CVD risk documentation increased four fold after the implementation of PREDICT. To date, the PREDICT dataset includes around 63,000 risk assessments conducted on a cohort of over 48,000 people by over 1000 general practitioners and practice nurses. This cohort has been followed from baseline for a median of 2.12 years. During that time 2655 people died or were hospitalised with a CVD event. Analyses showed that the original Framingham risk score was reasonably well calibrated overall but underestimated risk in high risk ethnic groups. Discrimination was only modest (AUC 0.701). An adjusted Framingham score, recommended by the New Zealand Guideline Group (NZGG) overestimated 5-year event rates by around 4-7%, in effect lowering the threshold for drug therapy to about 10% 5-year predicted CVD risk. The NZGG adjusted score (AUC 0.676) was less discriminating than the Framingham score and over-adjusted for high risk ethnic groups. For the cohort aged 30-74 years, the NZGG-recommended CVD risk management strategy identified almost half of the population as eligible for lifestyle management +/- drug therapy and this group generated 82% of all CVD events. In contrast the original Framingham score classified less than one-third of the cohort as eligible for individualised management and this group generated 71% of the events that occurred during follow-up. Implications This research project has demonstrated that a CDSS tool can be successfully implemented on a large scale in New Zealand general practice. It has assisted practitioners to improve the assessment and management of CVD at the time of patient consultation. Simultaneously, PREDICT has cost-effectively generated one of the largest cohorts of Māori and non-Māori ever assembled in New Zealand. As the cohort grows, new CVD risk prediction scores will be able to be developed for many New Zealand sub-populations. It will also provide clinicians and policy makers with the information needed to determine the trade-offs between the resources required to manage increasing proportions of the populations and the likely impact of management on preventing CVD events.

Page generated in 0.1087 seconds