Spelling suggestions: "subject:"290102 good engineering"" "subject:"290102 good ingineering""
1 |
Modelling of the glass transition temperature of sugar-rich foods and its relation to spray drying of such productsTruong, V. Unknown Date (has links)
No description available.
|
2 |
Utilization of sweet potato starch, flour and fibre in bread and biscuits : physico-chemical and nutritional characteristics : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Technology in Food Technology, Massey UniversityMais, Anton January 2008 (has links)
Sweet-potato contains a limited amount of protein, although rich in dietary fibre content and carbohydrate, so a successful combination with wheat flour for bread and biscuit production would be nutritionally advantageous. In particular, the role of these ingredients in relating to acceptability of breads and biscuit with higher percentage of sweet potato starch, flour in wheat flour. In this study, starch, flour and residue fibre of three sweet-potato varieties (red, orange and white -types) were studied. The 5 -10% combination levels for biscuit-making were found to be acceptable, without affecting the quality of the biscuit (combination of texture and biscuit size). In bread, bread containing 15% red and white replacement starches and orange replacement flour was found to be acceptable level, without affecting the quality of the bread, in an attempt to replace wheat at higher per cent level. The physicochemical study was complemented with a nutritional study to determine beneficial effects of food rich in dietary fibre and starches, in the context of improving diet related problems. RVA results showed sweet-potato ingredients affected differently the pasting temperature, peak viscosity and final viscosity of the normal wheat flour (p<0.05). Fibre inclusion showed large reduction in viscosity and swelling of sweet potato starch. Biscuits and breads containing sweet-potato starch and flour are low in amylose, and digest slowly because of lowly oriented and ‘crystalline’ areas within the granules enable to swell or to ungelatinised starch granules, whereas wheat control biscuit was able to gelatinised starch and exerted a greater effect upon digestibility. There are many other factors that need to be considered when analysing the in vitro starch digestibility such including amylose content, amylopectin structure and presence of fibre and gelatinising. Sweet-potato starch, flour and fibre addition show least effect on bread texture and size and starch, flour and fibre replacement. However, in in vitro starch digestibility test higher values RSS was recorded for starch addition followed by flour addition.
|
3 |
Production of alginate beads : a project report [i.e. thesis] presented in partial fulfillment of the requirements for the degree of Master in Food Technology at Massey University, Auckland, New Zealand. EMBARGOED until 1 May 2011Ren, Lu Unknown Date (has links)
Content removed from thesis due to copyright restrictions: Winger, R.J. and L. Ren (2009). "Solubility of sodium and potassium iodates in saturated salt solutions." Food Chemistry 113: 600-601. / This paper was to improve the production of calcium-induced alginate gels manufactured by a company in Auckland. Problems encountered included yield and syneresis of the beads post-gelation. Essentially the alginate, sugars and other ingredients were dissolved in water at 80ºC. The pH of the solution was adjusted and the alginate beads were extruded into a 5% CaCl2 bath before being drained and dried. The chemical reaction between sodium alginate and calcium ions is dependent upon the solubility and availability of calcium ions. Some calcium salts (e.g., CaCl2, calcium lactate) were readily soluble and fully dissociated in water and resulted in an immediate gelation of the alginate. Dicalcium phosphate (DCP) was sparingly soluble at pH 7 and calcium ions were not released significantly until the pH reached about pH 4.2. Sodium hexametaphosphate (SHMP) is a chelating agent and this was used to soak up small quantities of Ca+2 to ensure no gelation occured while the alginate was being mixed. The optimum quantities of alginate, DCP and SHMP were defined in the laboratory trials. The use of SHMP, maltodextrin, and gums significantly affected the hardness and stickiness of gel beads. It was found that the combination of xanthan and alginate Protanal LF 120 gave the best results in terms of minimal stickiness and maximum yield after drying. Key words: alginate gel beads, syneresis, formula, pH, citric acid, gelation time, SHMP, setting time, yield rate, drying, hardness, stickiness, maltodextrin, xanthan gum, guar gum, stickiness by touching, leakage, apparent viscosity.
|
4 |
Rheological characterisation of age thickening in milk concentrates : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Engineering at Massey UniversityTrinh, Binh January 2006 (has links)
Pages A58-A66 are missing from original but content appears complete. / This project investigates the time-dependent rheological behaviour of fresh and reconstituted milk concentrates. New experimental protocols, including sampling and measurement techniques, as well as equipment calibration and data analysis procedures were developed for both the industrial surveys and controlled rheology experiments. The controlled rheology experiments were mainly carried out on reconstituted milk concentrates to minimise the variation in composition of fresh milk. A new recombination rig was built which could minmise the age thickening process by mixing at 35°C and recirculating at 40,000 s-1 to break down the structure completely. This is the essence of this project, where age thickening is studied from a starting point of a filly broken down structure in contrast to past research. Using this method, the replicate milk concentrate samples had reproducible rheological behaviour, with a maximum reproducible error of 10%. Age thickening involves two stages, a slow initial increase in apparent viscosity with storage time, followed by a sudden sharp rise which marks the onset of gelation. The age thickening behaviour of milk concentrates is dependent on the processing variables prior to rheological measurement. These include solids content, shear rate and temperature during recombination, shear rate and residence time in the plate heat exchanger, and most importantly the raw material. The viscosity at the gelling point is an important characteristic of the age thickening process, and seems to depend mainly on the powder used, rather than the process treatments applied. Industrial surveys exhibited similar trends, even under varying conditions that could not be completely controlled. It is proposed that two types of age thickening phenomena can be distinguished: type I occurs below the temperature at minimum viscosity (65°C in this case), where weak interactions take place between the casein micelles; type II occurs above the temperature at minimum viscosity, where additional stronger covalent bonds are formed, primarily due to the denaturation of whey proteins. No mathematical model for the time-dependent rheology was developed. However, some important issues that must be taken into account during modelling were discussed. The results showed that the age thickening process is more complex than had previously been envisaged. The knowledge of the interactions between the operating conditions, rheology of fresh concentrates and powder properties should be invaluable in the improvement of plant efficiency and quality control.
|
5 |
Modeling heat transfer in butter products : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph. D.) in Bioprocess Engineering, Institute of Technology and Engineering, Massey University, Palmerston North, New ZealandNahid, Amsha January 2007 (has links)
Butter keeping quality and pallet physical stability during transport and storage are dependent on the temperature distribution through the product. Understanding these temperature changes are of vital importance for the dairy industry with regard to butter manufacture, storage and shipping. Three dimensional mathematical models of heat transfer were developed to predict thawing and freezing in butter products. These models require accurate thermophysical data as an input. Specific heat capacity and enthalpy of butter with different composition was measured using Differential Scanning Calorimetry. The specific heat capacity of butter differs for cooling and heating operations due to significant supercooling and delayed crystallization of the fat fraction of butter at temperatures well below the equilibrium phase change temperature during cooling. This reduces the heat capacity for cooling relative to that for heating. Thawing of individual blocks of butter was accurately predicted by the conduction only model (no mass transfer limitations) with equilibrium thermal properties giving accurate predictions when the butter was completely frozen before thawing. For partially frozen butter the conduction model with the measured temperature dependent specific heat capacity data for unfrozen butter including melting of some of the fat fraction gave accurate predictions. For freezing it was observed that water in the butter supercools many degrees below its initial freezing point before freezing due to its water in oil structure. Experiments suggested that during freezing release of latent heat observed as a temperature rebound is controlled as much by the rate of crystallisation of water in each of the water droplets as by the rate of heat transfer. A conduction only model including water crystallization kinetics based on the Avrami Model predicted freezing in butter successfully. Simple models with equilibrium thermal properties and nucleation only kinetics (based on homogenous nucleation theory) or the sensible heat only model (no release of latent heat) gave poor predictions. The models for individual blocks were extended to predict heat transfer in butter pallets. A butter pallet contains product, packaging material and the air entrapped between the packaging and butter cartons. Measurements were made for freezing and thawing of full and half pallets at a commercial storage facility and in the University laboratory. Thawing and freezing in wrapped tightly stacked pallets was predicted accurately by the conduction only model with effective thermal properties (incorporating butter, packaging and air) estimated by the parallel model. For unwrapped tightly stacked or loosely stacked pallets there is potential for air flow between the adjacent cartons of butter. An alternative approach was developed which consisted of modeling the pallet on block by block basis using effective heat transfer coefficients for each surface. Different heat transfer coefficients were used on different faces of the blocks depending on the location of the block in the pallet. This approach gave good predictions for both unwrapped tightly stacked and loosely stacked pallets using the estimated effective heat transfer coefficients from the measured data. Further experimental and/or modelling work is required in order to develop guidelines for estimating effective heat transfer coefficient values for internal block face for industrial scenarios.
|
Page generated in 0.0702 seconds