• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • 1
  • Tagged with
  • 19
  • 18
  • 16
  • 16
  • 12
  • 12
  • 12
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate Cancer

Stahel, Anette January 2007 (has links)
The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. The specific aim of this project was to study if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells and to do this with dose and time responses in focus. In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 in five different concentrations, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that regardless of dose or time, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP.
12

24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate Cancer Cells : A Study of Long-term Effects

Stahel, Anette January 2008 (has links)
The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. This is a follow-up to an earlier study, and the specific aim of this project was to find out if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells during long-term treatment (up to 48 hours). In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 of the concentration 10-8 M, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that despite of the rather high dose used, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP, regardless of time.
13

24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate Cancer

Stahel, Anette January 2007 (has links)
<p>The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. The specific aim of this project was to study if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells and to do this with dose and time responses in focus. In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 in five different concentrations, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that regardless of dose or time, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP.</p>
14

24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate Cancer Cells : A Study of Long-term Effects

Stahel, Anette January 2008 (has links)
<p>The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. This is a follow-up to an earlier study, and the specific aim of this project was to find out if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells during long-term treatment (up to 48 hours). In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 of the concentration 10-8 M, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that despite of the rather high dose used, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP, regardless of time.</p>
15

1,25(OH)2D3 Initially Reduces TGFβ Activity in PC-3 Prostate Cancer Cells

Stahel, Anette January 2008 (has links)
<p>The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this mainly through a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. Another major way in which 1,25(OH)2D3 inhibits cell growth in prostate cancer is via membrane-initiated steroid signalling, which triggers activation of signal cascades upon steroid binding to a receptor complex, leading to induction of genes regulating cell growth, proliferation and apoptosis. The main prostate cancer inhibiting membrane-initiated route is the TGFβ signalling pathway, elicited by the protein TGFβ. In this experiment the activating effects of 1,25(OH)2D3 on TGFβ in prostate cancer cells, as well as two other important proteins downstream in this cascade, Smad2 and 3, were investigated. PC-3 cells were incubated for 3, 5, 10, 30 and 60 minutes as well as 38 hours both together with 1,25(OH)2D3 of the concentrations 10-10 and 10-7 M and without. As the downstream cascade protein JNK is a known activator of Smad2/3, this procedure was also repeated with a JNK inhibitor. An ELISA assay scanning for activated TGFβ was then performed on supernatants from the cells treated without JNK inhibitor. In addition, a Western Blot scanning for activated Smad2 and 3 was performed on supernatants from all groups of treatment. The analysis of the result values showed that 10-10 M 1,25(OH)2D3 significantly lowered the content of active TGFβ in PC-3 cells within 3 and 5 minutes. Unfortunately the Western Blot was unsuccessful and needs therefore be repeated.</p>
16

1alpha,25-Dihydroxy-VitaminD3 hemmt das Wachstum von Patched-assoziierten Rhabdomyosarkomen und Basaliomen / 1alpha,25-Dihydroxy-VitaminD3 inhibits the growth of Patched-associated rhadomyosarkomas and basal cell carcinomas

Lammering, Iris Berenice 02 November 2011 (has links)
No description available.
17

Biological Roles of the Vitamin D Receptor in the Regulation of Transporters and Enzymes on Drug Disposition, Including Cytochrome P450 (CYP7A1) on Cholesterol Metabolism

Chow, Edwin C. Y. 15 August 2013 (has links)
Nuclear receptors play significant roles in the regulation of transporters and enzymes to balance the level of endogenous molecules and to protect the body from foreign molecules. The vitamin D receptor (VDR) and its natural ligand, 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], was shown to upregulate rat ileal apical sodium dependent bile acid transporter (Asbt) to increase the reclamation of bile acids, ligands of the farnesoid X receptor (FXR). FXR is considered to be an important, negative regulator of the cholesterol metabolizing enzyme, Cyp7a1, which metabolizes cholesterol to bile acids in the liver. In rats, decreased Cyp7a1 and increased P-glycoprotein/multidrug resistance protein 1 (P-gp/Mdr1) expressions pursuant to 1,25(OH)2D3 treatment was viewed as FXR effects in which hepatic VDR protein is poorly expressed. In contrast, changes in rat intestinal and renal transporters such as multidrug resistance associated proteins (Mrp2, Mrp3, and Mrp4), Asbt, and P-gp after administration of 1,25(OH)2D3 were attributed directly as VDR effects due to higher VDR levels expressed in these tissues. Higher VDR expressions were found among mouse hepatocytes compared to those in rats. Hence, fxr(-/-) and fxr(+/+) mouse models were used to discriminate between VDR vs. FXR effects in murine livers. Hepatic Cyp7a1 in mice was found to be upregulated with 1,25(OH)2D3 treatment, via the derepression of the short heterodimer partner (SHP). Putative VDREs, identified in mouse and human SHP promoters, were responsible for the inhibitory effect on SHP. The increase in hepatic Cyp7a1 expression and decreased plasma and liver cholesterol were observed in mice prefed with a Western diet. A strong correlation was found between tissue Cyp7a1 and P-gp changes and 1,25(OH)2D3 plasma and tissue concentrations, confirming that VDR plays an important role in the disposition of xenobiotics and cholesterol metabolism. Moreover, renal and brain Mdr1a/P-gp were found to be directly upregulated by the VDR in mice, and concomitantly, increased renal and brain secretion of digoxin, a P-gp substrate, in vivo. The important observations: the cholesterol lowering and increased brain P-gp efflux activity properties suggest that VDR is a therapeutic target for treatment of hypercholesterolemia and Alzheimer’s diseases, since beta amyloid, precursors of plague, are P-gp substrates.
18

Biological Roles of the Vitamin D Receptor in the Regulation of Transporters and Enzymes on Drug Disposition, Including Cytochrome P450 (CYP7A1) on Cholesterol Metabolism

Chow, Edwin C. Y. 15 August 2013 (has links)
Nuclear receptors play significant roles in the regulation of transporters and enzymes to balance the level of endogenous molecules and to protect the body from foreign molecules. The vitamin D receptor (VDR) and its natural ligand, 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], was shown to upregulate rat ileal apical sodium dependent bile acid transporter (Asbt) to increase the reclamation of bile acids, ligands of the farnesoid X receptor (FXR). FXR is considered to be an important, negative regulator of the cholesterol metabolizing enzyme, Cyp7a1, which metabolizes cholesterol to bile acids in the liver. In rats, decreased Cyp7a1 and increased P-glycoprotein/multidrug resistance protein 1 (P-gp/Mdr1) expressions pursuant to 1,25(OH)2D3 treatment was viewed as FXR effects in which hepatic VDR protein is poorly expressed. In contrast, changes in rat intestinal and renal transporters such as multidrug resistance associated proteins (Mrp2, Mrp3, and Mrp4), Asbt, and P-gp after administration of 1,25(OH)2D3 were attributed directly as VDR effects due to higher VDR levels expressed in these tissues. Higher VDR expressions were found among mouse hepatocytes compared to those in rats. Hence, fxr(-/-) and fxr(+/+) mouse models were used to discriminate between VDR vs. FXR effects in murine livers. Hepatic Cyp7a1 in mice was found to be upregulated with 1,25(OH)2D3 treatment, via the derepression of the short heterodimer partner (SHP). Putative VDREs, identified in mouse and human SHP promoters, were responsible for the inhibitory effect on SHP. The increase in hepatic Cyp7a1 expression and decreased plasma and liver cholesterol were observed in mice prefed with a Western diet. A strong correlation was found between tissue Cyp7a1 and P-gp changes and 1,25(OH)2D3 plasma and tissue concentrations, confirming that VDR plays an important role in the disposition of xenobiotics and cholesterol metabolism. Moreover, renal and brain Mdr1a/P-gp were found to be directly upregulated by the VDR in mice, and concomitantly, increased renal and brain secretion of digoxin, a P-gp substrate, in vivo. The important observations: the cholesterol lowering and increased brain P-gp efflux activity properties suggest that VDR is a therapeutic target for treatment of hypercholesterolemia and Alzheimer’s diseases, since beta amyloid, precursors of plague, are P-gp substrates.
19

Vitamin D Inhibits Expression of Protein Arginine Deiminase 2 and 4 in Experimental Autoimmune Encephalomoyelitis Model Of Multiple Sclerosis

McCain, Travis William January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Multiple sclerosis (MS) is a disabling disease that afflicts an estimated two million people worldwide. The disease is characterized by degradation of the myelin sheath that insulates neurons of the central nervous system manifesting as a heterogeneous collection of symptoms. Two enzymes, protein arginine deaminases type 2 and 4 (PAD2 and PAD4) have been implicated to play an etiologic role in demyelination and neurodegeneration by catalyzing a post-translational modification of arginine peptide residues to citrulline. The pathogenesis of MS is poorly understood, though vitamin D deficiency is a well-associated risk factor for developing the disorder. Using the experimental autoimmune encephalomyelitis (EAE) model of MS we demonstrate vitamin D treatment to attenuate over-expression of PAD 2 and 4 in the brain and spine during EAE. In addition, we identify two molecules produced by peripheral immune cells, IFNɣ and IL-6, as candidate signaling molecules that induce PAD expression in the brain. We demonstrate vitamin D treatment to inhibit IFNɣ mediated up regulation of PAD2 and PAD4 both directly within the brain and by modulating PAD-inducing cytokine production by infiltrating immune cells. These results provide neuroprotective rational for the supplementation of vitamin D in MS patients. More importantly, these results imply an epigenetic link between vitamin D deficiency and the pathogenesis of MS that merits further investigation.

Page generated in 0.341 seconds