Spelling suggestions: "subject:"2d matematerials"" "subject:"2d datenmaterials""
51 |
Synthesis and Characterization of 2D and 3D Metal Organic FrameworksJanuary 2019 (has links)
abstract: Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation of the formation process of MOF membrane, framework defects, and two-dimensional (2D) MOFs, aiming to explore the answers for three critical questions: (1) how to obtain a continuous MOF membrane, (2) how defects form in MOF framework, and (3) how to obtain isolated 2D MOFs. To solve the first problem, the accumulated protons in the MOF synthesis solution is proposed to be the key factor preventing the continuous growth among Universitetet I Oslo-(UiO)-66 crystals. The hypothesis is verified by the growth reactivation under the addition of deprotonating agent. As long as the protons were sufficiently coordinated by the deprotonating agent, the continuous growth of UiO-66 is guaranteed. Moreover, the modulation effect can impact the coordination equilibrium so that an oriented growth of UiO-66 film was achieved in membrane structures. To find the answer for the second problem, the defect formation mechanism in UiO-66 was investigated and the formation of missing-cluster (MC) defects is attributed to the partially-deprotonated ligands. Experimental results show the number of MC defects is sensitive to the addition of deprotonating agent, synthesis temperature, and reactant concentration. Pore size distribution allows an accurate and convenient characterization of the defects. Results show that these defects can cause significant deviations of its pore size distribution from the perfect crystal. The study of the third questions is based on the established bi-phase synthesis method, a facile synthesis method is adopted for the production of high quality 2D MOFs in large scale. Here, pyridine is used as capping reagent to prevent the interplanar hydrogen bond formation. Meanwhile, formic acid and triethylamine as modulator and deprotonating agent to balance the anisotropic growth, crystallinity, and yield in the 2D MOF synthesis. As a result, high quality 2D zinc-terephthalic acid (ZnBDC) and copper-terephthalic acid (CuBDC) with extraordinary aspect ratio samples were successfully synthesized. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2019
|
52 |
NANOSCALE DEVICES CONSISTING OF HETEROSTRUCTURES OF CARBON NANOTUBES AND TWO-DIMENSIONAL LAYERED MATERIALSNasseri, Mohsen 01 January 2018 (has links)
One dimensional carbon nanotubes (CNTs) and two-dimensional layered materials like graphene, MoS2, hexagonal boron nitride (hBN), etc. with different electrical and mechanical properties are great candidates for many applications in the future. In this study the synthesis and growth of carbon nanotubes on both conducting graphene and graphite substrates as well as insulating hBN substrate with precise crystallographic orientation is achieved. We show that the nanotubes have a clear preference to align to specific crystal directions of the underlying graphene or hBN substrate. On thicker flakes of graphite, the edges of these 2D materials can control the orientation of these carbon nanotubes. This integrated aligned growth of materials with similar lattices provides a promising route to achieving intricate nanoscale electrical circuits. Furthermore, short channel nanoscale devices consisting of the heterostructure of 1D and 2D materials are fabricated. In these nanoscale devices the nanogap is created due to etching of few layer graphene flake through hydrogenation and the channel is either carbon nanotubes or 2D materials like graphene and MoS2. Finally the transport properties of these nanoscale devices is studied.
|
53 |
Photophysical Interactions in Vapor Synthesized and Mechanically Exfoliated Two-Dimensional Conducting Crystallites for Quantum and Optical SensingJayanand, Kishan 08 1900 (has links)
In the first study, superconducting 2D NbSe₂ was examined towards its prototypical demonstration as a transition-edge sensor, where photoexcitation caused a thermodynamic phase transition in NbSe₂ from the superconducting state to the normal state. The efficacy of the optical absorption was found to depend on the wavelength of the incoming radiation used, which ranged from the ultra-violet (405 nm), visible (660 nm), to the infrared (1060 nm). In the second case involving WSe₂, the UV-ozone treatment revealed the presence of localized excitonic emission in 1L WSe₂ that was robust and long-lived. Our third material platform dealt with hybrid 0D-2D ensembles based on graphene and WSe₂, specifically graphene–endohedral, WSe₂–fullerene (C₆₀), and WSe₂–Au nanoparticles, and exhibited exceptional performance gains achieved with both types of hybrid structures. Next, we investigated WSe₂ based mixed dimensional hybrids. Temperature T-dependent and wavelength λ-dependent optoelectronic transport measurements showed a shift in the spectral response of 1L WSe₂ towards the SPR peak locations of Au-Sp and Au-BP, fostered through the plexciton interactions. Models for the plexcitonic interactions are proposed that provide a framework for explaining the photoexcited hot charge carrier injection from AuNPs to WSe₂ and its influence on the carrier dynamics in these hybrid systems. Last, we studied interactions of vdWs hybrid structures composed of WSe₂ with 0D buckminsterfullerene (C₆₀) spheres. Our results indicate that the C₆₀-WSe₂ vdWs hybrid heterostructure appears to be an attractive architecture for enabling charge transfer and high performance photodetection capabilities. T-dependent electrical transport measurements after C₆₀ deposition revealed a dominant p-type conduction behavior and a significant ×10³ increase in WSe₂ field-effect mobility, with a maximum field-effect mobility of 281 cm²V⁻¹s⁻¹ achieved at 350 K and room-T mobility of 119.9 cm²V⁻¹s⁻¹ for the C₆₀-WSe₂ hybrid.
|
54 |
Prédiction et simulation numérique de nouveaux matériaux à deux dimensions / Prediction and simulation of new materials in two dimensionsAbboud, Ali 09 November 2018 (has links)
Dans le domaine des nanosciences, la recherche sur les matériaux possédant des dimensions réduites a connu des progrès spectaculaires. Tandis que de nombreux travaux ont été fait initialement sur le graphène, l'attention s'est ensuite portée vers d'autres matériaux bidimensionnels, tels que le nitrure de bore hexagonal ou encore les dichalcogénures de métaux de transition. Néanmoins, il est toujours nécessaire de trouver des matériaux possédant des caractéristiques équivalentes ou supérieures à celles des composés déjà connus. Dans le cadre de cette thèse, nous avons utilisé le calcul ab initio et plus particulièrement la théorie de la fonctionnelle de la densité pour prédire et comprendre les propriétés de trois familles de matériaux bidimensionnels. Premièrement, en prenant la structure du phosphorène comme structure de référence et en remplaçant le phosphore par des atomes voisins dans le tableau périodique, nous avons pu obtenir des matériaux inconnus jusqu'ici. Ensuite, nous nous sommes intéressés à des matériaux à base d'halogénures tels que AcOBr ou BaFCl, parmi d'autres. Enfin, nous avons mis l'accent sur des composés bidimensionnels quaternaires, tels que ScP2AgSe6, P2AgSe6Bi, P2CuBiSe6 et CuInP2 S6. Pour chaque matériau, nous avons démontré qu'il était dynamiquement stable et étudié sa structure électronique, et pour certains l'effet d'un champ électrique sur le matériau, ce qui ouvre la porte à de futures études expérimentales dans le domaine / In the field of nanosciences, research on materials with reduced dimensions has seen spectacular progress. While many works were initially done on graphene, the attention then came to other two-dimensional materials, such as hexagonal boron nitride or transition metal dichalcogenides. Nevertheless, it is still necessary to find materials with characteristics equivalent to or superior to those of the already known compounds. In this thesis, we used ab initio calculations and more particularly density functional theory to predict and understand the properties of three families of two-dimensional materials. First, taking the phosphorene structure as the reference and replacing phosphorus with neighboring atoms in the periodic table, we have been able to obtain unknown materials so far. Then we looked at halide materials such as AcOBr or BaFCl, among others. Finally, we have focused on two-dimensional quaternary compounds, such as ScP2AgSe6, P2AgSe6Bi, P2CuBiSe6 and CuInP2S6. For each compound, we demonstrated that it was dynamically stable and studied its electronic structure, and for some the effect of an electric field on the material, which opens the door for future experimental studies in the field
|
55 |
Fabricating van der Waals HeterostructuresBoddison-Chouinard, Justin 30 November 2018 (has links)
The isolation of single layer graphene in 2004 by Geim and Novoselov introduced a
method that researchers could extend to other van der Waals materials. Interesting and new properties arise when we reduce a crystal to two dimensions where they are often different from their bulk counterpart. Due to the van der Waals bonding between layers, these single sheets of crystal can be combined and stacked with diferent sheets to create novel materials.
With the goal to study the interesting physics associated to these stacks, the focus of this work is on the fabrication and characterization of van der Waals heterostructures.
In this work, we first present a brief history of 2D materials, the fabrication of heterostructures, and the various tools used to characterize these materials. We then give a description of the custom-built instrument that was used to assemble various 2D heterostructures followed by the findings associated with the optimization of the cleanliness of the stack's interface and surface. Finally, we discuss the results related to the twisting of adjacent layers of stacked MoS2 and its relation to the interlayer coupling between said layers.
|
56 |
Study of Two Dimensional Materials by Scanning Probe MicroscopyPlumadore, Ryan 04 January 2019 (has links)
This thesis explores structural and electronic properties of layered materials at the nanometre scale. Room temperature and low temperature ultrahigh vacuum scanning probe microscopy (scanning tunneling microscopy, scanning tunneling spectroscopy, atomic force microscopy) is used as the primary characterization method. The main findings in this thesis are: (a) observations of the atomic lattice and imaging local lattice defects of semiconducting ReS2 by scanning tunneling microscopy, (b) measurement of the electronic band gap of ReS2 by scanning tunneling spectroscopy, and (c) scanning tunneling microscopy study of 1T-TaS2 lattice and chemically functionalizing its defects with magnetic molecules.
|
57 |
Large-scale density functional theory study of van-der-Waals heterostructuresConstantinescu, Gabriel Cristian January 2018 (has links)
Research on two-dimensional (2D) materials currently occupies a sizeable fraction of the materials science community, which has led to the development of a comprehensive body of knowledge on such layered structures. However, the goal of this thesis is to deepen the understanding of the comparatively unknown heterostructures composed of different stacked layers. First, we utilise linear-scaling density functional theory (LS-DFT) to simulate intricate interfaces between the most promising layered materials, such as transition metal dichalcogenides (TMDC) or black phosphorus (BP) and hexagonal boron nitride (hBN). We show that hBN can protect BP from external influences, while also preventing the band-gap reduction in BP stacks, and enabling the use of BP heterostructures as tunnelling field effect transistors. Moreover, our simulations of the electronic structure of TMDC interfaces have reproduced photoemission spectroscopy observations, and have also provided an explanation for the coexistence of commensurate and incommensurate phases within the same crystal. Secondly, we have developed new functionality to be used in the future study of 2D heterostructures, in the form of a linear-response phonon formalism for LS-DFT. As part of its implementation, we have solved multiple implementation and theoretical issues through the use of novel algorithms.
|
58 |
Characterization of the Local Structure and Composition of Low Dimensional Heterostructures and Thin FilmsDitto, Jeffrey 27 October 2016 (has links)
The observation of graphene’s extraordinary electrical properties has stirred great interest in two dimensional (2D) materials. The rapid pace of discovery for low dimensional materials with exciting properties continue with graphene allotropes, multiple polymorphs of borophene, germanene, and many others. The future of 2D materials goes beyond synthesis and characterization of free standing materials and on to the construction of heterostructures or sophisticated multilayer devices. Knowledge about the resulting local structure and composition of such systems will be key to understanding and optimizing their performance characteristics.
2D materials do not have a repeating crystal structure which can be easily characterized using bulk methods and therefore a localized high resolution method is needed. Electron microscopy is well suited for characterizing 2D materials as a repeating coherent structure is not necessary to produce a measureable signal as may be the case for diffraction methods. A unique opportunity for fine local scale measurements in low dimensional systems exists with a specific class of materials known as ferecrystals, the rotationally disordered relative of misfit layer compounds. Ferecrystals provide an excellent test system to observe effects at heterostructure interfaces as the whole film is composed of interdigitated two dimensional layers. Therefore bulk methods can be used to corroborate local scale measurements.
From the qualitative interpretation of high resolution scanning transmission electron microscope (STEM) images to the quantitative application of STEM energy dispersive X-ray spectroscopy (EDX), this thesis uses numerous methods electron microscopy. The culmination of this work is seen at the end of the thesis where atomically resolved STEM-EDX hyperspectral maps could be used to measure element specific atomic distances and the atomically resolved fractional occupancies of a low dimensional alloy. These local scale measurements are corroborated by additional experimental data. The input of multiple techniques leads to improved certainty in local scale measurements and the applicability of these methods to non-ferecrystal low dimensional systems.
|
59 |
Experimental and theoretical studies of hexagonal boron nitride single crystal growthLiu, Song January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / James H. Edgar / Hexagonal boron nitride (hBN) has recently been envisioned for electronic, optoelectronic, and nanophotonic applications due to its strong anisotropy and unique properties. To realize these applications, the ability to synthesize single crystals with large size and low defect density is required. Furthermore, a detailed mechanistic understanding of hBN growth process is helpful for understanding and optimizing the synthesis technique for high quality crystals.
In this dissertation, the production of large-scale, high-quality hBN single crystals via precipitation from metal solvents, including Ni-Cr and Fe-Cr, was demonstrated. The use of Fe-Cr mixture provides a lower cost alternative to the more common Ni-Cr solvent for growing comparable crystals. The clear and colorless crystals have a maximum domain size of around 2 mm and a thickness of around 200 μm. Detailed characterizations demonstrated that the crystals produced are pure hBN phase, with low defect and residual impurity concentrations. The temperature-dependent optical response of excitons showed that the exciton-phonon interaction in bulk hBN is in the strong-coupling regime.
A new growth method for monoisotopic hBN single crystals, i.e. h¹⁰BN and h¹¹BN, was developed, by which hBN single crystals were grown using a Ni-Cr solvent and pure boron and nitrogen sources at atmospheric pressure. The chemical bonding analysis revealed that the B-N bond in h¹¹BN is slightly stronger than that in h¹⁰BN. The polariton lifetime in our monoisotopic hBN samples increases threefold over the naturally abundant hBN, and the isotopic substitution changes the electron density distribution and the energy bandgap of hBN. The ability to produce crystals in this manner opens the door to isotopically engineering the properties and performance of hBN devices.
Atomistic-scale insights into the growth of hBN were obtained from multiscale modeling combining density functional theory (DFT) and reactive molecular dynamics (rMD). The energetics and kinetics of BN species on Ni(111) and Ni(211) surfaces were calculated by DFT. These DFT calculations data were subsequently used to generate a classical description of the Ni-B and Ni-N pair interactions within the formulation of the reactive force field, i.e., ReaxFF. MD simulations under the newly developed potential helped reveal the elementary nucleation and growth process of an hBN monolayer - nucleation initiates from the growth of linear BN chains, which further evolve into branched and then hexagonal lattices.
In the end, molecular dynamics simulations demonstrated that the thermodynamic preference of hBN geometries varying from triangle to hexagonal can be tuned by B to N molar ratios, and gas phase N₂ partial pressure, which is also supported by quantum mechanics calculations. The modeling confirms that the nitrogen species indeed plays an important role in dictating sizes and edge terminations of hBN sheets.
|
60 |
Band Gap Engineering of 2D Nanomaterials and Graphene Based Heterostructure DevicesMONSHI, MD Monirojjaman 05 July 2017 (has links)
Two-Dimensional (2D) materials often exhibit distinguished properties as compared to their 3D counterparts and offer great potential to advance technology. However, even graphene, the first synthesized 2D material, still faces several challenges, despite its high mobility and high thermal conductivity. Similarly, germanene and silicene face challenges due to readily available semiconducting properties to be used in electronics, photonics or photocatalysis applications. Here, we propose two approaches to tune the band gap: One is by forming nanoribbon and edge functionalization and another by doping using inorganic nanoparticle’s interaction with 2D nanomaterials.
Edge functionalization of armchair germanene nanoribbons (AGeNRs) has the potential to achieve a range of band gaps. The edge atoms of AGeNRs are passivated with hydrogen (-H and -2H) or halogen (-F, -Cl,-OH, -2F,-2Cl) atoms. Using density functional theory calculations, we found that edge-functionalized AGeNRs had band gaps as small as 0.012 eV when functionalized by -2H and as high as 0.84 eV with -2F.
Doping can change the semiconducting behavior of AGeNRs to metal due to the half-filled band making it useful for negative differential resistance (NDR) devices. In the case of zigzag germanene nanoribbons (ZGeNRs), single N or B doping transformed them from anti-ferromagnetic (AFM) semiconducting to ferromagnetic (FM) semiconductor or half-metal. Lastly, formation and edge free energy studies revealed the feasibility of chemical synthetization of edge-functionalized and doped germanene.
Electronic, optical and transport properties of the graphene/ZnO heterostructure have been explored using first-principles density functional theory. The results show that Zn12O12 can open a band gap of 14.5 meV in graphene, increase its optical absorption by 1.67 times, covering the visible spectrum and extended to the infra-red (IR) range, and create slight nonlinear I-V characteristics depending on the applied bias. This agrees well with collaborative experimental measurement of a similar system.
In conclusion, we have successfully studied the potential use of edge functionalization, band gap periodicity in nanoribbon width, and doping in germanene nanoribbons. Structural stability was also studied to investigate the feasibility for experimental synthesization. Inorganic nanoparticle’s interaction with graphene envisages the possibility of fabricating photo-electronic device covering visible spectrum and beyond. Finally, graphene complexes were merged with naturally available direct band gap of monolayer MoS2 to build efficient energy harvesting and photo detecting devices.
|
Page generated in 0.066 seconds