• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 9
  • 9
  • 9
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prédiction et simulation numérique de nouveaux matériaux à deux dimensions / Prediction and simulation of new materials in two dimensions

Abboud, Ali 09 November 2018 (has links)
Dans le domaine des nanosciences, la recherche sur les matériaux possédant des dimensions réduites a connu des progrès spectaculaires. Tandis que de nombreux travaux ont été fait initialement sur le graphène, l'attention s'est ensuite portée vers d'autres matériaux bidimensionnels, tels que le nitrure de bore hexagonal ou encore les dichalcogénures de métaux de transition. Néanmoins, il est toujours nécessaire de trouver des matériaux possédant des caractéristiques équivalentes ou supérieures à celles des composés déjà connus. Dans le cadre de cette thèse, nous avons utilisé le calcul ab initio et plus particulièrement la théorie de la fonctionnelle de la densité pour prédire et comprendre les propriétés de trois familles de matériaux bidimensionnels. Premièrement, en prenant la structure du phosphorène comme structure de référence et en remplaçant le phosphore par des atomes voisins dans le tableau périodique, nous avons pu obtenir des matériaux inconnus jusqu'ici. Ensuite, nous nous sommes intéressés à des matériaux à base d'halogénures tels que AcOBr ou BaFCl, parmi d'autres. Enfin, nous avons mis l'accent sur des composés bidimensionnels quaternaires, tels que ScP2AgSe6, P2AgSe6Bi, P2CuBiSe6 et CuInP2 S6. Pour chaque matériau, nous avons démontré qu'il était dynamiquement stable et étudié sa structure électronique, et pour certains l'effet d'un champ électrique sur le matériau, ce qui ouvre la porte à de futures études expérimentales dans le domaine / In the field of nanosciences, research on materials with reduced dimensions has seen spectacular progress. While many works were initially done on graphene, the attention then came to other two-dimensional materials, such as hexagonal boron nitride or transition metal dichalcogenides. Nevertheless, it is still necessary to find materials with characteristics equivalent to or superior to those of the already known compounds. In this thesis, we used ab initio calculations and more particularly density functional theory to predict and understand the properties of three families of two-dimensional materials. First, taking the phosphorene structure as the reference and replacing phosphorus with neighboring atoms in the periodic table, we have been able to obtain unknown materials so far. Then we looked at halide materials such as AcOBr or BaFCl, among others. Finally, we have focused on two-dimensional quaternary compounds, such as ScP2AgSe6, P2AgSe6Bi, P2CuBiSe6 and CuInP2S6. For each compound, we demonstrated that it was dynamically stable and studied its electronic structure, and for some the effect of an electric field on the material, which opens the door for future experimental studies in the field
2

Theoretical sStudy of In-plane Heterojunctions of Transition-metal Dichalcogenides and their Applications for Low-power Transistors / Etude théorique des hétérojonctions planaires de dichalcogénures de métaux de transition et de leurs applications pour des transistors à basse consommation

Choukroun, Jean 14 December 2018 (has links)
La miniaturisation des MOSFET a permis une forte diminution des transistors et des puces, ainsi qu’une augmentation exponentielle des capacités de calcul. Cette miniaturisation ne peut néanmoins continuer ainsi: de nos jours, un microprocesseur peut contenir des dizaines de milliards de transistors et la chaleur dégagée par ces composants peut fortement détériorer ses performances. De plus, du fait de leur principe même de fonctionnement, la tension d’alimentation des MOSFET ne peut être réduite sans en impacter les performances. De nouvelles architectures telles que le TFET -basé sur l’effet tunnel bande-à-bande et pouvant fonctionner à des tensions d’alimentation très basses- ainsi que de nouveaux matériaux pourraient donc apporter une alternative au MOSFET silicium. Les monocouches de dichalcogènures de métaux de transitions (TMDs) -des semiconducteurs à bande interdite directe d’environ 1 à 2 eV- possèdent un fort potentiel pour l’électronique et la photonique. De plus, dans le cas de contraintes appropriées, ils peuvent conduire un alignement de bandes présentant un broken-gap; cette configuration permet de surpasser les limites habituelles du TFETs, à savoir de faibles courants dus à l’effet tunnel sur lequel ces dispositifs reposent. Dans ce travail de thèse, des hétérojonctions planaires de TMD sont modélisées via une approche atomistique de liaisons fortes, et une configuration broken-gap est observée dans deux d’entre elles (MoTe2/MoS2 et WTe2/MoS2). Leur potentiel dans le cadre de transistors à effet tunnel (TFETs) est évalué au moyen de simulations de transport quantique basées sur un modèle TB atomistique ainsi que la théorie des fonctions de Green hors-équilibre. Des TFETs type-p et type-n basés sur ces hétérojonctions sont simulés et présentent des courants ON élevés (ION > 103 µA/µm) ainsi que des pentes sous-seuil extrêmement raides (SS < 5 mV/dec) à des tensions d’alimentation très faibles (VDD = 0.3 V). Plusieurs architectures novatrices basées sur ces TFETs et découlant de la nature 2D des matériaux utilisés sont également présentées, et permettent d’atteindre des performances encore plus élevées. / Nowadays, microprocessors can contain tens of billions of transistors and as a result, heat dissipation and its impact on device performance has increasingly become a hindrance to further scaling. Due to their working mechanism, the power supply of MOSFETs cannot be reduced without deteriorating overall performance, and Si-MOSFETs scaling therefore seems to be reaching its end. New architectures such as the TFET, which can perform at low supply voltages thanks to its reliance on band-to-band tunneling, and new materials could solve this issue. Transition metal dichalcogenide monolayers (TMDs) are 2D semiconductors with direct band gaps ranging from 1 to 2 eV, and therefore hold potential in electronics and photonics. Moreover, when under appropriate strains, their band alignment can result in broken-gap configurations which can circumvent the traditionally low currents observed in TFETs due to the tunneling mechanism they rely upon. In this work, in-plane TMD heterojunctions are investigated using an atomistic tight-binding approach, two of which lead to a broken-gap configuration (MoTe2/MoS2 and WTe2/MoS2). The potential of these heterojunctions for use in tunnel field-effect transistors (TFETs) is evaluated via quantum transport computations based on an atomistic tight-binding model and the non-equilibrium Green’s function theory. Both p-type and n-type TFETs based on these in-plane TMD heterojunctions are shownto yield high ON currents (ION > 103 µA/µm) and extremely low subthreshold swings (SS < 5 mV/dec) at low supply voltages (VDD = 0.3 V). Innovative device architectures allowed by the 2D nature of these materials are also proposed, and shown to enhance performance even further.
3

Croissance et réactivité du silicène / Growth and reactivity of silicene

Tchalala, Mohamed Rachid 24 October 2014 (has links)
L’objet de cette thèse est l’étude de la croissance de silicène sur des substrats d’argent,ainsi que l’étude de sa réactivité vis-à-vis de l’oxygène. La croissance a été réalisée sous ultra-vide et contrôlée par spectroscopie d’électrons Auger (AES) et par diffraction d’électrons lents (LEED). Les structures obtenues et leurs réactivités à l’oxygène ont été étudiées par microscopie à champ proche (STM et nc-AFM) et par spectroscopie de photoémission résolue en angle (ARPES). Nous avons étudié la structure interne des nano-rubans de silicène auto-assemblés sur un substrat d’Ag(110). Sur Ag(111) nous obtenons un feuillet de silicène qui présente différentes structures en fonction de la température du substrat. L’étude de la réactivité des rubans et des feuillets a montré que le silicène formé sur substrat d’argent est relativement stable vis-à-vis de l’oxygène ce qui ouvre des perspectives de fonctionnalisation du silicène. La dernière partie de cette thèse concerne la synthèse de feuillets de silicium par voie chimique. Nous avons mis au point une nouvelle méthode prometteuse de synthèse chimique qui nous a permis de synthétiser des feuillets de silicium de structure graphitique. / The objective of this thesis is the study of the growth of silicene on silver substrates as well as its reactivity towards the oxygen. The growth was performed under ultra-high vacuum and controlled by Auger electrons spectroscopy (AES) and low energy electrons diffraction (LEED). The obtained structures and their relativities towards the oxygen were studied by near field microscopy (STM and nc-AFM) and by angle resolved electrons photoemission spectroscopy (ARPES). We have studied the internal structure of the selfassembled silicene nanoribbons on Ag(110) substrate. On Ag(111), we have obtained a silicene sheet presenting different structures versus the temperature of the substrate. The reactivity of silicene nanoribbons and sheets grown on silver show that silicene is relatively stable towards the oxygen which opens a new perspectives of functionalization of the silicene. The last part of this thesis concerns the synthesis of silicone sheets by chemical process. We have develpped a new promising process of chemical synthesis which allowed us to synthesize silicon sheets with graphitic structure.
4

Hétérostructures de van der Waals à base de Nitrure / Nitride based van der Waals heterostructures

Henck, Hugo 21 September 2017 (has links)
Le sujet de cette thèse est à l’interface entre l’étude de composés à base de nitrure et des structures émergeantes formées par les matériaux bidimensionnels (2D) d’épaisseur atomique. Ce travail se consacre sur l’hybridation des propriétés électriques et optiques des semi-conducteurs à larges bandes interdites que sont les nitrures et des performances mécaniques, électriques et optiques des matériaux lamellaires, récemment isolé à l’échelle d’un plan atomique, qui sont aujourd’hui considérées avec attention aux regards de futures applications et d’études plus fondamentales. En particulier, une étude des propriétés électroniques, optiques et structurelles d’hétérostructures composées de plusieurs matériaux lamellaires et d’interfaces entre matériaux 2D et 3D a été réalisé par des moyens de microscopie et de spectroscopie tel que la spectroscopie Raman, de photoémission et d’absorption.Ce manuscrit traite dans un premier temps des propriétés structurelles et électroniques du nitrure de bore hexagonal (h-BN), matériau isolant aux propriétés optiques exotiques et essentiel dans la future intégration de ce type de matériaux 2D permettant de mettre en valeur leurs propriétés intrinsèques.En utilisant le graphène comme substrat les problèmes de mesures par photoémission rencontrés pour des matériaux isolant ont pu être surmonté dans le cas du h-BN et une étude des défauts structurels a pu être réalisée. Par conséquent, les premières mesures directes de la structure de bande électronique de plusieurs plans de h-BN sont présentées dans ce manuscrit.Dans un second temps, une approche d’intégration de ces matériaux 2D différente a été étudiée en formant une hétérostructure 2D/3D. L’interface de cette hétérojonction, composée d’un plan de disulfure de molybdène (MoS2) de dopage intrinsèque N associé à 300 nm de nitrure de gallium (GaN) intentionnellement dopé P à l’aide de magnésium, a été caractérisée. Un transfert de charge du GaN vers le MoS2 a pu être identifié suggérant un contrôle des propriétés électroniques de ce type de structure par le choix de matériaux.Ces travaux ont permis de révéler les diagrammes de bandes électroniques complet des structures étudiées a pu être obtenu permettant une meilleur compréhension de ces systèmes émergeants. / This thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems.
5

Spintronique dans les matériaux 2D : du graphène au h-BN / Spintronics with 2D materials : from graphene to h-BN

Piquemal, Maëlis 26 March 2018 (has links)
Aujourd'hui se pose une question fondamentale sur le futur de l'électronique actuelle. De plus en plus, des circuits hybrides intégrant de nouvelles fonctionnalités sont fabriqués. On envisage même, à plus long terme, des circuits basés sur une technologie différente de l'approche CMOS utilisée actuellement. Une de ces technologies est la spintronique qui tire profit du spin, degré de liberté supplémentaire de l'électron. Elle a rapidement fait ses preuves par le passé dans le stockage non volatile binaire (disques durs) et s'oriente aujourd'hui vers de nouvelles mémoires magnétiques ultra-performantes et basse consommation les MRAMs (Magnetic Random Access Memories). En parallèle, une nouvelle catégorie de matériaux à fort potentiel a émergé : les matériaux bidimensionnels (2D). Ces matériaux, dont le fer de lance est le graphène (une couche d'un atome d'épaisseur de graphite), offrent de nouvelles propriétés inégalées. Leur combinaison via la fabrication d'hétérostructures et la capacité d'avoir un contrôle de leur épaisseur à l'échelle atomique pourrait devenir un atout majeur en électronique et plus particulièrement en spintronique. L'objectif de cette thèse a été l'étude de l'intégration et la démonstration du potentiel en termes de fonctionnalités et de performances de ces nouveaux matériaux 2D au sein de jonctions tunnel magnétiques (MTJs), le dispositif prototype de la spintronique. Au cours de cette thèse, nous avons poursuivi les travaux initiés au laboratoire sur l'intégration dans des MTJs du graphène obtenu via une méthode de dépôt CVD (dépôt chimique en phase vapeur) directe sur l’électrode ferromagnétique inférieure. Nous avons démontré que les propriétés de filtrage en spin et de membrane protectrice contre l'oxydation de l'électrode ferromagnétique (FM) sous-jacente s'étendaient à une unique couche de graphène. Par ailleurs, nous avons aussi pu étudier et améliorer significativement l'amplitude du filtrage en spin et du signal de magnétorésistance observé via l'optimisation des procédés de croissance et d'intégration et le choix de différentes configurations de matériaux ferromagnétiques (Ni(111), Co...). De forts effets de filtrage de spin ont ainsi pu être observés avec des magnétorésistances allant de -15% à plus de +80%, soit presque trois fois l'état de l'art. En parallèle, nous nous sommes aussi intéressés à un autre matériau 2D, le nitrure de bore hexagonal (h-BN), isolant isomorphe du graphène qui s'apparenterait à une barrière tunnel d'un seul atome d'épaisseur. Afin d’étudier le h-BN dans une MTJ, nous avons décidé d’exploiter à nouveau le principe d’une croissance directe par CVD du matériau 2D sur le matériau FM. Des mesures CT-AFM (Conductive Tip Atomic Force Microscopy) nous ont permis de démontrer les propriétés de barrière tunnel homogène du h-BN ainsi que le contrôle possible de la hauteur de barrière avec le nombre de couches de h-BN. De plus, des mesures électriques et de magnétotransport nous ont permis de confirmer l’intégration réussie de la barrière tunnel h-BN dans notre MTJ. Nous avons pu obtenir les premiers résultats de forte magnétorésistance pour du h-BN avec une amplitude de la magnétorésistance de +50%, plus d'un ordre de grandeur au-dessus de l'état de l'art, révélant le potentiel du h-BN. Nous avons enfin aussi pu démontrer l'importance du couplage entre le h-BN et l'électrode FM offrant un potentiel de contrôle inédit sur les effets de filtrage en spin et allant jusqu'à rendre le h-BN métallique. Lors de cette thèse, nous avons pu montrer que l’intégration du graphène et du h-BN dans des MTJs via la croissance directe par CVD est un procédé privilégié pour tirer pleinement profit de leurs propriétés. Les résultats obtenus de forte magnétorésistance et de filtrage en spin laissent entrevoir le fort potentiel du graphène, du h-BN mais aussi des autres nouveaux matériaux 2D à venir pour les MTJs. Ces études ouvrent une nouvelle voie d’exploration pour les MTJs : les 2D-MTJs. / Nowadays a critical issue is raised concerning the future of current electronics. Increasingly, hybrid circuits with new functionalities are manufactured. A longer term approach is even contemplated with circuits based on a technology different from the one currently used (CMOS technology). One of these envisioned technologies is spintronics, which benefits from the spin properties, the electron additional degree of freedom. Spintronics has quickly proven its worth in the past in the field of non volatile data storing (hard drives) and is today moving towards new fast and ultra-low-power magnetic random access memories the MRAMs. Meanwhile, these last few years, a new category of materials with high potential has emerged : the bidimensional materials (2D). These materials, with graphene (one atomically thick layer of graphite) as the forerunner, provide new unrivaled properties. Their combination in the form of heterostructures and the ability to obtain a control of their thickness at the atomic scale could be a major asset for electronics and more specifically spintronics. The purpose of this thesis has been the study of the integration and the demonstration of the potential in terms of functionalities and performances of these new 2D materials inside the prototypical spintronic device: the magnetic tunnel junction (MTJ). During this thesis, we have pursued the work initiated by the laboratory on the integration of graphene in MTJs with direct CVD deposition method (chemical vapor deposition) on the underlying ferromagnetic electrode. We demonstrated that the spin filtering and protective membrane properties (preventing the oxidation of the underlying ferromagnetic electrode (FM)) observed earlier expand to a graphene monolayer. Furthermore, we have also studied and improved significantly the amplitude of the spin filtering and the magnetoresistance signal observed. This was done thanks to the optimization of the growth process, integration, and choice of the different configurations of ferromagnetic materials in our structures (Ni(111), Co...). High spin filtering effects have been observed as a function of the configurations with magnetoristances ranging from -15% to beyond +80%, which is almost three times the state of the art. Meanwhile, we looked at another 2D material, the hexagonal boron nitride (h-BN), an insulating isomorph of graphene which could be considered as an atomically thin tunnel barrier. In order to study h-BN into a MTJ, we took again advantage of direct CVD growth of the 2D material on a ferromagnet. CT-AFM (Conductive Tip Atomic Force Microscopy) measurements allowed us to demonstrate the homogeneous tunnel barrier properties of h-BN and the possible control of the barrier height with the number of h-BN layers. Simultaneously, electrical and magnetotransport measurement in the complete junction allowed us to confirm the achieved integration of the h-BN tunnel barrier into our MTJ. We have been able to obtain the first results of high magnetoresistance for h-BN with values one order of magnitude beyond the state of the art. A magnetoresistance of +50% has been reached, thanks to the optimization of the growth process revealing the potential of h-BN. We have also been able to show the important role of the coupling between h-BN and the FM electrode offering an unprecedented potential of control on the spin filtering effects, ranging up to making the h-BN metallic. During this thesis, we have been able to demonstrate that the integration of graphene and h-BN in MTJs through direct CVD growth is a promising process in order to fully exploit their properties. The results obtained of high magnetoresistance and spin filtering point to the high potential for MTJs of graphene and h-BN but also to all the new 2D materials to come. These studies pave the way for exploring a new path for MTJs : the 2D-MTJs.
6

Propriétés physico-chimiques et électroniques des interfaces supramoléculaires hybrides / Physical, chemical and electronic properties of hybrid supramolecular interfaces

Stoeckel, Marc-Antoine 05 March 2019 (has links)
Le travail réalisé durant cette thèse s’est axé sur la compréhension des mécanismes de transport de charges impliqués dans l’électronique organique ainsi que sur l’ingénierie des propriétés semiconductrices d’interfaces supramoléculaires hybrides. Tout d’abord, l’origine intrinsèque des propriétés de transport de charges a été étudiée dans de petites molécules semiconductrices, similaires en structure chimiques, mais présentant des propriétés électriques nettement différentes. Puis, les propriétés électroniques de matériaux 2D ont été modulées à l’aide de monocouches auto-assemblées induisant des propriétés de dopage antagonistes. Enfin, des pérovskites hybrides ainsi que des petites molécules semiconductrices ont été utilisées comme matériaux actifs dans la détection d’oxygène et d’humidité, respectivement, formant alors des détecteurs à haute performance. L’ensemble de ces projets utilise les principes de la chimie supramoléculaire dans leur réalisation. / The work realized during this thesis was oriented toward the comprehension of the charge transport mechanism involved in organic electronics, and on the engineering of the semiconducting properties of hybrid supramolecular interfaces. Firstly, the intrinsic origin of the charge transport properties was studied for two semiconducting small molecules which are similar in terms of chemical structure but exhibit different electrical properties. Secondly, the electronic properties of 2D material were modulated with the help of self-assembled monolayers inducing antagonist doping properties. Finally, hybrid perovskites and semiconducting small molecules were used as active materials in oxygen and humidity sensing respectively, forming high-performance sensors. All the project employed the principles of the supramolecular chemistry in their realisation.
7

Electronic structure and transport in the graphene/MoS₂ heterostructure for the conception of a field effect transistor / Structure électronique et transport dans l'hétérostructure graphène/MoS₂ pour la conception d'un transistor à effet de champ.

Di Felice, Daniela 25 September 2018 (has links)
L'isolement du graphène, une monocouche de graphite composée d'un plan d’atomes de carbone, a démontré qu'il est possible de séparer un seul plan d'épaisseur atomique, que l'on appelle matériau bidimensionnel (2D), à partir des solides de Van de Waals (vdW). Grâce à leur stabilité, différents matériaux 2D peuvent être empilés pour former les hétérostructures de vdW. L'interaction vdW à l'interface étant suffisamment faible, les propriétés spécifiques de chaque matériau demeurent globalement inchangées dans l’empilement. En utilisant une démarche théorique et computationnelle basée sur la théorie de la fonctionnelle de la densité (DFT) et le formalisme de Keldysh-Green, nous avons étudié l'hétérostructure graphène/MoS₂ . Le principal intérêt des propriétés spécifiques du graphène et du MoS₂ pour la conception d'un transistor à effet de champ réside dans la mobilité du graphène, à la base d'un transistor haute performance et dans le gap électronique du MoS₂, à la base de la commutation du dispositif. Tout d'abord, nous avons étudié les effets de la rotation entre les deux couches sur les propriétés électroniques à l'interface, en démontrant que les propriétés électroniques globales ne sont pas affectées par l'orientation. En revanche, les images STM (microscope à effet tunnel) sont différentes pour chaque orientation, en raison d'un changement de densité de charge locale. Dans un deuxième temps, nous avons utilisé l’interface graphène/MoS₂ en tant que modèle très simple de Transistor à Effet de Champ. Nous avons analysé le rôle des hétérostructures de vdW sur la performance du transistor, en ajoutant des couches alternées de graphène et MoS₂ sur l'interface graphène/MoS₂. Il a ainsi été démontré que la forme de la DOS au bord du gap est le paramètre le plus important pour la vitesse de commutation du transistor, alors que si l’on ajoute des couches, il n’y aura pas d’amélioration du comportement du transistor, en raison de l'indépendance des interfaces dans les hétérostructures de vdW. Cependant, cela démontre que, dans le cadre de la DFT, on peut étudier les propriétés de transport des hétérostructures de vdW plus complexes en séparant chaque interface et en réduisant le temps de calcul. Les matériaux 2D sont également étudiés ici en tant que pointe pour STM et AFM (microscope à force atomique) : une pointe de graphène testée sur MoS₂ avec défauts a été comparée aux résultats correspondants pour une pointe en cuivre. La résolution atomique a été obtenue et grâce à l'interaction de vdW entre la pointe et l’échantillon, il est possible d’éviter les effets de contact responsables du transfert d'atomes entre la pointe et l'échantillon. En outre, l'analyse des défauts est très utile du fait de la présence de nouveaux pics dans le gap du MoS₂ : ils peuvent ainsi être utilisés pour récupérer un pic de courant et donner des perspectives pour améliorer la performance des transistors. / The isolation of graphene, a single stable layer of graphite, composed by a plane of carbon atoms, demonstrated the possibility to separate a single layer of atomic thickness, called bidimensional (2D) material, from the van der Waals (vdW) solids. Thanks to their stability, 2D materials can be used to form vdW heterostructures, a vertical stack of different 2D crystals maintained together by the vdW forces. In principle, due to the weakness of the vdW interaction, each layer keeps its own global electronic properties. Using a theoretical and computational approach based on the Density Functional Theory (DFT) and Keldish-Green formalism, we have studied graphene/MoS₂ heterostructure. In this work, we are interested in the specific electronic properties of graphene and MoS₂ for the conception of field effect transistor: the high mobility of graphene as a basis for high performance transistor and the gap of MoS₂ able to switch the device. First, the graphene/MoS₂ interface is electronically characterized by analyzing the effects of different orientations between the layers on the electronic properties. We demonstrated that the global electronic properties as bandstructure and Density of State (DOS) are not affected by the orientation, whereas, by mean of Scanning Tunneling Microscope (STM) images, we found that different orientations leads to different local DOS. In the second part, graphene/MoS₂ is used as a very simple and efficient model for Field Effect Transistor. The role of the vdW heterostructure in the transistor operation is analyzed by stacking additional and alternate graphene and MoS₂ layers on the simple graphene/MoS₂ interface. We demonstrated that the shape of the DOS at the gap band edge is the fundamental parameter in the switch velocity of the transistor, whereas the additional layers do not improve the transistor behavior, because of the independence of the interfaces in the vdW heterostructures. However, this demonstrates the possibility to study, in the framework of DFT, the transport properties of more complex vdW heterostructures, separating the single interfaces and reducing drastically the calculation time. The 2D materials are also studied in the role of a tip for STM and Atomic Force Microscopy (AFM). A graphene-like tip, tested on defected MoS₂, is compared with a standard copper tip, and it is found to provide atomic resolution in STM images. In addition, due to vdW interaction with the sample, this tip avoids the contact effect responsible for the transfer of atoms between the tip and the sample. Furthermore, the analysis of defects can be very useful since they induce new peaks in the gap of MoS₂: hence, they can be used to get a peak of current representing an interesting perspective to improve the transistor operation.
8

Backside absorbing layer microscopy : a new tool for the investigation of 2D materials / Backside absorbing layer microscopy : un nouvel outil pour l'étude des matériaux 2D

Jaouen, Kévin 16 October 2019 (has links)
La microscopie optique sur substrats antireflets est un outil de caractérisation simple et puissant qui a notamment permis l'isolation du graphène en 2004. Depuis, le domaine d'étude des matériaux bidimensionnels (2D) s'est rapidement développé, tant au niveau fondamental qu'appliqué. Ces matériaux ultraminces présentent des inhomogénéités (bords, joints de grains, multicouches, etc.) qui impactent fortement leurs propriétés physiques et chimiques. Ainsi leur caractérisation à l'échelle locale est primordiale. Cette thèse s'intéresse à une technique récente de microscopie optique à fort contraste, nommée BALM, basée sur l'utilisation originale de couches antireflets très minces (2-5 nm) et fortement absorbantes (métalliques). Elle a notamment pour but d'évaluer les mérites de cette technique pour l'étude des matériaux 2D et de leur réactivité chimique. Ainsi, les différents leviers permettant d'améliorer les conditions d'observation des matériaux 2D ont tout d'abord été étudiés et optimisés pour deux matériaux modèles : l'oxyde de graphène et les monocouches de MoS₂. L'étude de la dynamique de dépôt de couches moléculaires a notamment permis de montrer à la fois l'extrême sensibilité de BALM pour ce type de mesures et l'apport significatif des multicouches antireflets pour l'augmentation du contraste lors de l'observation des matériaux 2D. L'un des atouts principaux de BALM venant de sa combinaison à d'autres techniques, nous nous sommes particulièrement intéressés au couplage de mesures optiques et électrochimiques pour lesquelles le revêtement antireflet sert d'électrode de travail. Nous avons ainsi pu étudier optiquement la dynamique de réduction électrochimique de l'oxyde de graphène (GO), l'électro-greffage de couches minces organiques par réduction de sels de diazonium sur le GO et sa forme réduite (r-GO), ainsi que l'intercalation d'ions métalliques entre feuillets de GO. En combinant versatilité et fort-contraste, BALM est ainsi établi comme un outil prometteur pour l'étude des matériaux 2D et en particulier pour la caractérisation locale et in situ de leur réactivité chimique et électrochimique. / Optical microscopy based on anti-reflective coatings is a simple yet powerful characterization tool which notably allowed the first observation of graphene in 2004. Since then, the field of two-dimensional (2D) materials has developed rapidly both at the fundamental and applied levels. These ultrathin materials present inhomogeneities (edges, grain boundaries, multilayers, etc.) which strongly impact their physical and chemical properties. Thus their local characterization is essential. This thesis focuses on a recent enhanced-contrast optical microscopy technique, named BALM, based on ultrathin (2-5 nm) and strongly light-absorbing (metallic) anti-reflective layers. The goal is notably to evaluate the benefits of this technique for the study of 2D materials and their chemical reactivity. The various levers to improve 2D materials observation were investigated and optimized for two model materials: graphene oxide and MoS₂ monolayers. The investigation of molecular layer deposition dynamic notably showed the extreme sensitivity of BALM for such measurements and the significant contribution of multilayers anti-reflective coatings to enhance contrast during the observation of 2D materials. One of the main assets of BALM comes from its combination to other techniques. We particularly considered the coupling between optical measurements and electrochemistry for which the anti-reflective layer serves as working electrode. We investigated optically the dynamic of electrochemical reduction of Graphene Oxide (GO), the electrografting of organic layers by diazonium salts reduction on GO and its reduced form (rGO), as well as the intercalation of metallic ions within GO sheets. By combining versatility and high-contrast, BALM is established as a promising tool for the study of 2D materials, especially for the local and in situ characterization of their chemical and electrochemical reactivity.
9

Synthèse et structure électronique de phases MAX et MXènes / Synthesis and electronic structure of MAX and MXene phases

Magné, Damien 06 October 2016 (has links)
Les objectifs de ce travail sont d'une part d'étudier la structure électronique de carbures de titane bidimensionnels appartenant à la famille des MXènes, et d'autre part de synthétiser des films minces pour caractériser certaines de leurs propriétés. L'étude de la structure électronique a été réalisée sur le système Ti3C2T2 avec une attention particulière portée aux groupements de surface T (T=OH, F ou O) en comparant les résultats obtenus par spectroscopie de perte d'énergie des électrons à ceux des calculs ab initio. Cette étude, portée à la fois sur les excitations du gaz d'électrons de valence et des électrons de coeur, a permis de mettre en évidence la localisation des groupements de surface, ainsi que leur influence sur la structure électronique du MXene. La comparaison des simulations et des spectres expérimentaux a également permis de caractériser la nature chimique des groupements de surface. Enfin, la limite d'une telle étude est discutée en considérant les phénomènes d'irradiation responsables de la perte d'atomes d'hydrogène. La synthèse d'échantillons modèles nécessite la synthèse préalable d'un film mince de phase MAX précurseur pour le MXene : nous avons choisi la phase Ti2AlC, précurseur de Ti2C. La synthèse de Ti2AlC a été réalisée par recuit ex-situ de systèmes multicouches déposés à température ambiante. Les films ont été caractérisés par diffraction des rayons X et microscopie électronique en transmission. Au-delà de l'obtention d'un film mince de Ti2AlC texturé, cette étude a permis de montrer que la phase recherchée était obtenue via des mécanismes d'interdiffusions induisant la formation d'une solution solide métastable vers 400°C qui se transforme en phase MAX vers 600°C. Enfin, l'application de ce procédé à la phase V2AlC a permis de montrer l'importance de l'orientation de la phase initiale pour l'obtention d'un film mince texturé. / The aim of this work is at first to study the electronic structure of bidimensional titanium carbide systems, belonging to the MXene family and also to synthesize thin films of such new materials to characterize their properties. The study of the electronic structure has been performed for the Ti3C2T2 MXene with a special attention to the T surface groups by using a combination of electron energy loss spectroscopy and ab initio calculations. This study, focused on both valence and core electrons excitations, enabled the identification of the surface group localization, their influence on the MXene electronic structure as well as their chemical nature. The limits of our TEM-based study is also discussed in view of irradiation phenomena which induce the loss of hydrogen atoms. The synthesis of a MXene thin film requires, beforehand, that of a MAX phase thin film: we opted for Ti2AlC, the precursor for the Ti2C MXene. The MAX phase thin film synthesis was carried out by ex-situ annealing of a multilayer layers. X-ray diffraction experiments and cross-sectional transmission electron microscopy observations show that a highly textured Ti2AlC thin film is obtained above 600°C after the formation, at 400°C, of a metastable solid solution. Finally, by using the same process for V2AlC, we demonstrate that the initial phase orientation plays a key role for the texture of the thin film so obtained.

Page generated in 0.0492 seconds