• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical Properties of Semiconducting Two-Dimensional Transition Metal Dichalcogenide and Magnetic Materials Artificial van der Waals Heterostructures / 半導体二次元遷移金属ダイカルコゲナイドと磁性材料の人工ファンデルワールスヘテロ構造の光学特性

Zhang, Yan 23 May 2022 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24116号 / エネ博第449号 / 新制||エネ||84(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー応用科学専攻 / (主査)教授 大垣 英明, 教授 松田 一成, 教授 宮内 雄平 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
2

Investigation on high-mobility graphene hexagon boron nitride heterostructure nano-devices using low temperature scanning probe microscopy

Dou, Ziwei January 2018 (has links)
This thesis presents several experiments, generally aiming at visualising the ballistic and topological transport on the high-mobility graphene/boron nitride heterostructure using the scanning gate microscope. For the first experiment, we use the scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and in a weak perpendicular magnetic field. We employ a magnetic focusing transport configuration to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local potential generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector. For the second experiment, we investigate the graphene van der Waals structures formed by aligning monolayer graphene with insulating layers of hexagonal boron nitride which exhibit a moiré superlattice that is expected to break sublattice symmetry. However, despite an energy gap of several tens of millielectronvolts opening in the Dirac spectrum, electrical resistivity remains lower than expected at low temperature and varies between devices. While subgap states are likely to play a role in this behaviour, their precise nature is still unclear in the community. We therefore perform a scanning gate microscopy study of graphene moiré superlattice devices with comparable activation energy but with different charge disorder levels. In the device with higher charge impurity ($\sim$ 10$^-$ cm$^{-2}$) and lower resistivity ($\sim$ 10 k$\Omega$) at the Dirac point we observe scanning gate response along the graphene edges. Combined with simulations, our measurements suggest that enhanced edge doping is responsible for this effect. In addition, a device with low charge impurity ($\sim$ 10$^{9}$ cm$^{-2}$) and higher resistivity ($\sim$ 100 k$\Omega$) shows subgap states in the bulk. Our measurements provide alternative model to the prevailing theory in the literature in which the topological bandstructures of the graphene moiré superlattices entail an edge currents shunting the insulating bulk. In the third experiment, we continue our study in the graphene moir$\acute e$ superlattices with the newly reported non-local Hall signals at the main Dirac point. It has been associated with the non-zero valley Berry curvature due to the gap opening and the nonlocal signal has been interpreted as the signature of the topological valley Hall effects. However, the nature of such signal is still disputed in the community, due to the vanishing density of states near the Dirac point and the possible topological edge transport in the system. Various artificial contribution without a topological origin of the measurement scheme has also been suggested. In connection to the second experiment, we use the scanning gate microscope to image the non-local Hall resistance as well as the local resistance in the current path. By analysing the features in the two sets of images, we find evidence for topological Hall current in the bulk despite a large artificial components which cannot be distinguished in global transport measurement. In the last experiment, we show the development of a radio-frequency scanning impedance microscopy compatible with the existing scanning gate microscopy and the dilution refrigerator. We detailed the design and the implementation of the radio-frequency reflectometry and the specialised tip holder for the integration of the tip and the transmission lines. We demonstrate the capability of imaging local impedance of the sample by detecting the mechanical oscillation of the tip, the device topography, and the Landau levels in the quantum Hall regime at liquid helium temperature and milli-Kelvin temperature.
3

Electronic structure and transport in the graphene/MoS₂ heterostructure for the conception of a field effect transistor / Structure électronique et transport dans l'hétérostructure graphène/MoS₂ pour la conception d'un transistor à effet de champ.

Di Felice, Daniela 25 September 2018 (has links)
L'isolement du graphène, une monocouche de graphite composée d'un plan d’atomes de carbone, a démontré qu'il est possible de séparer un seul plan d'épaisseur atomique, que l'on appelle matériau bidimensionnel (2D), à partir des solides de Van de Waals (vdW). Grâce à leur stabilité, différents matériaux 2D peuvent être empilés pour former les hétérostructures de vdW. L'interaction vdW à l'interface étant suffisamment faible, les propriétés spécifiques de chaque matériau demeurent globalement inchangées dans l’empilement. En utilisant une démarche théorique et computationnelle basée sur la théorie de la fonctionnelle de la densité (DFT) et le formalisme de Keldysh-Green, nous avons étudié l'hétérostructure graphène/MoS₂ . Le principal intérêt des propriétés spécifiques du graphène et du MoS₂ pour la conception d'un transistor à effet de champ réside dans la mobilité du graphène, à la base d'un transistor haute performance et dans le gap électronique du MoS₂, à la base de la commutation du dispositif. Tout d'abord, nous avons étudié les effets de la rotation entre les deux couches sur les propriétés électroniques à l'interface, en démontrant que les propriétés électroniques globales ne sont pas affectées par l'orientation. En revanche, les images STM (microscope à effet tunnel) sont différentes pour chaque orientation, en raison d'un changement de densité de charge locale. Dans un deuxième temps, nous avons utilisé l’interface graphène/MoS₂ en tant que modèle très simple de Transistor à Effet de Champ. Nous avons analysé le rôle des hétérostructures de vdW sur la performance du transistor, en ajoutant des couches alternées de graphène et MoS₂ sur l'interface graphène/MoS₂. Il a ainsi été démontré que la forme de la DOS au bord du gap est le paramètre le plus important pour la vitesse de commutation du transistor, alors que si l’on ajoute des couches, il n’y aura pas d’amélioration du comportement du transistor, en raison de l'indépendance des interfaces dans les hétérostructures de vdW. Cependant, cela démontre que, dans le cadre de la DFT, on peut étudier les propriétés de transport des hétérostructures de vdW plus complexes en séparant chaque interface et en réduisant le temps de calcul. Les matériaux 2D sont également étudiés ici en tant que pointe pour STM et AFM (microscope à force atomique) : une pointe de graphène testée sur MoS₂ avec défauts a été comparée aux résultats correspondants pour une pointe en cuivre. La résolution atomique a été obtenue et grâce à l'interaction de vdW entre la pointe et l’échantillon, il est possible d’éviter les effets de contact responsables du transfert d'atomes entre la pointe et l'échantillon. En outre, l'analyse des défauts est très utile du fait de la présence de nouveaux pics dans le gap du MoS₂ : ils peuvent ainsi être utilisés pour récupérer un pic de courant et donner des perspectives pour améliorer la performance des transistors. / The isolation of graphene, a single stable layer of graphite, composed by a plane of carbon atoms, demonstrated the possibility to separate a single layer of atomic thickness, called bidimensional (2D) material, from the van der Waals (vdW) solids. Thanks to their stability, 2D materials can be used to form vdW heterostructures, a vertical stack of different 2D crystals maintained together by the vdW forces. In principle, due to the weakness of the vdW interaction, each layer keeps its own global electronic properties. Using a theoretical and computational approach based on the Density Functional Theory (DFT) and Keldish-Green formalism, we have studied graphene/MoS₂ heterostructure. In this work, we are interested in the specific electronic properties of graphene and MoS₂ for the conception of field effect transistor: the high mobility of graphene as a basis for high performance transistor and the gap of MoS₂ able to switch the device. First, the graphene/MoS₂ interface is electronically characterized by analyzing the effects of different orientations between the layers on the electronic properties. We demonstrated that the global electronic properties as bandstructure and Density of State (DOS) are not affected by the orientation, whereas, by mean of Scanning Tunneling Microscope (STM) images, we found that different orientations leads to different local DOS. In the second part, graphene/MoS₂ is used as a very simple and efficient model for Field Effect Transistor. The role of the vdW heterostructure in the transistor operation is analyzed by stacking additional and alternate graphene and MoS₂ layers on the simple graphene/MoS₂ interface. We demonstrated that the shape of the DOS at the gap band edge is the fundamental parameter in the switch velocity of the transistor, whereas the additional layers do not improve the transistor behavior, because of the independence of the interfaces in the vdW heterostructures. However, this demonstrates the possibility to study, in the framework of DFT, the transport properties of more complex vdW heterostructures, separating the single interfaces and reducing drastically the calculation time. The 2D materials are also studied in the role of a tip for STM and Atomic Force Microscopy (AFM). A graphene-like tip, tested on defected MoS₂, is compared with a standard copper tip, and it is found to provide atomic resolution in STM images. In addition, due to vdW interaction with the sample, this tip avoids the contact effect responsible for the transfer of atoms between the tip and the sample. Furthermore, the analysis of defects can be very useful since they induce new peaks in the gap of MoS₂: hence, they can be used to get a peak of current representing an interesting perspective to improve the transistor operation.
4

Information Transduction Between Spintronic, Photonic, and Magnetic States in Two-Dimensional Hybrid Systems

Luo, Yunqiu (Kelly) January 2019 (has links)
No description available.

Page generated in 0.1971 seconds