• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 22
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low-power hybrid TFET-CMOS memory

Gopinath, Anoop 02 April 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Gopinath, Anoop. M.S.E.C.E., Purdue University, May 2018. Low-Power Hybrid TFET-CMOS Memory. Major Professor: Maher E. Rizkalla. The power consumption and the switching speed of the current CMOS technology have reached their limits. In contrast, architecture design within computer systems are continuously seeking more performance and e ciency. Advanced technologies that optimize the power consumption and switching speed may help deliver this e ciency. Indeed, beyond CMOS technology may be a viable approach to meeting the ever increasing need for low-power design. These technology includes devices such as Tunnel Field E ect Transistor (TFET), Graphene based devices such as GFET and GRNFET and FinFET. However, the low cross-sectional area of the channel asso- ciated with smaller technology nodes brings with it the challenges associated with leakage current below the threshold. Mitigating these challenges with devices such as TFETs may allow higher levels of integration, faster switching speed and lower power consumption. This thesis investigates the use of Gallium Nitride (GaN) TFET devices at 20nm for memory cells. These cells can be used in the L1 data cache of the Graphic Processing Units (GPU) thereby minimizing the static power and the dynamic power within these memory systems. The TFET technology was chosen since it has a low subthreshold slope of nearly 30mV/decade. This enables the TFET-based cells to function with a 0.6V supply voltage leading to reduced dynamic power consumption and leakage current when compared to the current CMOS technology. The results suggest that there are bene ts in pursuing an integrated TFET-based technology for Very Large Scale Integrated Circuit (VLSI) design. These bene ts are demonstrated using simulation at the schematic-level using Cadence Virtuoso.
2

Transistores de tunelamento induzido por efeito de campo aplicados a circuitos básicos. / Tunnel field effect transistors applied to basic circuits.

Marcio Dalla Valle Martino 17 November 2017 (has links)
Este trabalho apresenta o estudo de transistores de tunelamento controlados por efeito de campo, denominados TFETs. Foram realizadas análises com base em explicações teóricas, simulações numéricas e medidas experimentais para demonstrar a viabilidade do uso desta tecnologia em blocos de circuitos fundamentais, atuando como alternativa para permitir o contínuo escalamento de dispositivos. A motivação para o uso de transistores com corrente principal resultante do tunelamento de banda para banda consiste na proposta de superar o limite físico de inclinação de sublimiar da tecnologia CMOS convencional de 60 mV/década sob temperatura ambiente. Afinal, esta limitação impede a redução na tensão de alimentação de circuitos e, consequentemente, apresenta crescentes problemas quanto à dissipação de potência. Com este objetivo, foram realizadas simulações numéricas de diversas geometrias alternativas visando atenuar as características indesejáveis dos TFETs, como a corrente ambipolar e a relativamente baixa relação ION/IOFF. Inicialmente foram definidos os modelos necessários para representar adequadamente os fenômenos relevantes sob variação de temperatura e é definida uma estrutura capaz de minimizar os efeitos da ambipolaridade. Posteriormente, medidas experimentais foram utilizadas para calibrar as simulações e estudar o efeito da temperatura e do dimensionamento no funcionamento de dispositivos desta tecnologia. Comparando resultados práticos e simulados, nota-se como uma redução no comprimento de porta, com a consequente inserção de uma subposição (underlap) em relação à junção canal/dreno, e uma diminuição na temperatura permitem a obtenção de valores promissores de inclinação de sublimiar e de relação ION/IOFF. Com base nestes resultados individuais, foram projetados circuitos básicos de aplicações analógicas, notadamente espelho de corrente e par diferencial, para a avaliação da viabilidade de duas diferentes estruturas de transistores de tunelamento. Foram realizadas medidas experimentais e simulações numéricas de ambos os circuitos com variações nas condições de polarização, na situação de descasamento entre os dispositivos e na temperatura de operação. O impacto em parâmetros fundamentais dos circuitos estudados, como a tensão de conformidade, a razão de espelhamento de corrente e o ganho de tensão diferencial, foi comparado para estruturas de tunelamento pontual (Point TFET), de tunelamento em linha (Line TFET) e de FinFETs. Em relação aos circuitos de espelhos de corrente, observou-se alta tensão de conformidade e baixa dependência com a temperatura para os circuitos com transistores de tunelamento. O Point TFET ainda apresentava a vantagem adicional da baixa susceptibilidade ao descasamento do comprimento de canal, porém com a desvantagem da baixa magnitude da corrente de referência quando comparado ao espelho com Line TFETs ou FinFETs. Já no caso de pares diferenciais, a maior tensão de conformidade foi obtida com FinFETs, enquanto os transistores de tunelamento apresentaram em comum a não degradação do ganho com a temperatura. Novamente o circuito com Point TFETs apresentou melhor resultado quando houve descasamento, enquanto que as outras duas tecnologias foram superiores quando ao ganho de tensão diferencial. Dessa forma, foram propostas equações generalizadas para os parâmetros fundamentais de ambos os circuitos para as 3 tecnologias. De modo geral, foi possível validar, portanto, a viabilidade de transistores de tunelamento para a obtenção de dispositivos com bons parâmetros individuais e com bons impactos em circuitos analógicos fundamentais, reforçando a importância desta promissora tecnologia. / This works presents the study of tunneling field effect transistors, namely TFETs. Analyses have been performed based on theoretical explanations, numerical simulations and experimental data in order to show this technology suitability as part of basic circuit blocks, being an important alternative for the continuous devices scaling. The basic idea of making use of band-to-band tunneling as the main current component comes from the possibility of reaching sub-60 mV/decade subthreshold slopes at room temperature, differently from conventional CMOS devices. After all, this physical limitation causes relevant power dissipation issues, since it requires relatively high power supply voltages. Bearing this objective, numerical simulations of several alternative geometries have been performed in order to tackle TFETs disadvantages, such as the undesirable ambipolar currents and the low ION/IOFF ratio. At first, it was necessary to choose the most appropriate models to take into consideration the relevant phenomena under temperature variation and to define the physical structure in order to minimize ambipolar effects. After these analyses, experimental data have been used to calibrate simulation parameters and to study how temperature and physical dimensions affect the performance of devices based on this technology. Comparing experimental and simulated results, it was possible to notice that when the structure is designed with gate underlap related to channel/drain junction and the temperature decreases, it was possible to obtain promising values for subthreshold slope and ION/IOFF ratio. Based on the analyses of these individual results, basic analog circuits have been designed, namely current mirror and differential pair, so that two different tunneling devices structures have been highlighted. Experimental measurements and numeric simulations have been performed for both circuits, under different conditions in terms of bias voltages, channel length mismatch and operation temperature. The impact on fundamental circuit parameters, such as compliance voltage, current mirroring ratio and differential voltage gain, has been compared for circuits designed with Point TFETs, Line TFETs and FinFETs. Regarding current mirror circuits, the obtained results revealed higher values of compliance voltage and lower susceptibility to the temperature for circuits designed with tunneling transistors. In addition, Point TFETs provided the lowest susceptibility to channel length mismatch, but also the worst values of reference currents, when compared to circuits with Line TFETs and FinFETs. Following the same procedure for differential pair, higher compliance voltage was obtained for FinFETs, while both tunneling transistors structures presented better behavior for differential voltage gain susceptibility to temperature variation. Once more, pairs with Point TFETs showed the best performance in terms of channel length mismatch, but the worst magnitude of differential voltage gain. This way, general equations have been proposed to model relevant parameters for the circuits designed with each technology. From an overall point of view, it was possible to support the suitability of optimizing tunneling transistors in order to obtain devices with favorable individual parameters and positive impacts on essential analog circuits, reassuring the relevance of this promising technology.
3

Transistores de tunelamento induzido por efeito de campo aplicados a circuitos básicos. / Tunnel field effect transistors applied to basic circuits.

Martino, Marcio Dalla Valle 17 November 2017 (has links)
Este trabalho apresenta o estudo de transistores de tunelamento controlados por efeito de campo, denominados TFETs. Foram realizadas análises com base em explicações teóricas, simulações numéricas e medidas experimentais para demonstrar a viabilidade do uso desta tecnologia em blocos de circuitos fundamentais, atuando como alternativa para permitir o contínuo escalamento de dispositivos. A motivação para o uso de transistores com corrente principal resultante do tunelamento de banda para banda consiste na proposta de superar o limite físico de inclinação de sublimiar da tecnologia CMOS convencional de 60 mV/década sob temperatura ambiente. Afinal, esta limitação impede a redução na tensão de alimentação de circuitos e, consequentemente, apresenta crescentes problemas quanto à dissipação de potência. Com este objetivo, foram realizadas simulações numéricas de diversas geometrias alternativas visando atenuar as características indesejáveis dos TFETs, como a corrente ambipolar e a relativamente baixa relação ION/IOFF. Inicialmente foram definidos os modelos necessários para representar adequadamente os fenômenos relevantes sob variação de temperatura e é definida uma estrutura capaz de minimizar os efeitos da ambipolaridade. Posteriormente, medidas experimentais foram utilizadas para calibrar as simulações e estudar o efeito da temperatura e do dimensionamento no funcionamento de dispositivos desta tecnologia. Comparando resultados práticos e simulados, nota-se como uma redução no comprimento de porta, com a consequente inserção de uma subposição (underlap) em relação à junção canal/dreno, e uma diminuição na temperatura permitem a obtenção de valores promissores de inclinação de sublimiar e de relação ION/IOFF. Com base nestes resultados individuais, foram projetados circuitos básicos de aplicações analógicas, notadamente espelho de corrente e par diferencial, para a avaliação da viabilidade de duas diferentes estruturas de transistores de tunelamento. Foram realizadas medidas experimentais e simulações numéricas de ambos os circuitos com variações nas condições de polarização, na situação de descasamento entre os dispositivos e na temperatura de operação. O impacto em parâmetros fundamentais dos circuitos estudados, como a tensão de conformidade, a razão de espelhamento de corrente e o ganho de tensão diferencial, foi comparado para estruturas de tunelamento pontual (Point TFET), de tunelamento em linha (Line TFET) e de FinFETs. Em relação aos circuitos de espelhos de corrente, observou-se alta tensão de conformidade e baixa dependência com a temperatura para os circuitos com transistores de tunelamento. O Point TFET ainda apresentava a vantagem adicional da baixa susceptibilidade ao descasamento do comprimento de canal, porém com a desvantagem da baixa magnitude da corrente de referência quando comparado ao espelho com Line TFETs ou FinFETs. Já no caso de pares diferenciais, a maior tensão de conformidade foi obtida com FinFETs, enquanto os transistores de tunelamento apresentaram em comum a não degradação do ganho com a temperatura. Novamente o circuito com Point TFETs apresentou melhor resultado quando houve descasamento, enquanto que as outras duas tecnologias foram superiores quando ao ganho de tensão diferencial. Dessa forma, foram propostas equações generalizadas para os parâmetros fundamentais de ambos os circuitos para as 3 tecnologias. De modo geral, foi possível validar, portanto, a viabilidade de transistores de tunelamento para a obtenção de dispositivos com bons parâmetros individuais e com bons impactos em circuitos analógicos fundamentais, reforçando a importância desta promissora tecnologia. / This works presents the study of tunneling field effect transistors, namely TFETs. Analyses have been performed based on theoretical explanations, numerical simulations and experimental data in order to show this technology suitability as part of basic circuit blocks, being an important alternative for the continuous devices scaling. The basic idea of making use of band-to-band tunneling as the main current component comes from the possibility of reaching sub-60 mV/decade subthreshold slopes at room temperature, differently from conventional CMOS devices. After all, this physical limitation causes relevant power dissipation issues, since it requires relatively high power supply voltages. Bearing this objective, numerical simulations of several alternative geometries have been performed in order to tackle TFETs disadvantages, such as the undesirable ambipolar currents and the low ION/IOFF ratio. At first, it was necessary to choose the most appropriate models to take into consideration the relevant phenomena under temperature variation and to define the physical structure in order to minimize ambipolar effects. After these analyses, experimental data have been used to calibrate simulation parameters and to study how temperature and physical dimensions affect the performance of devices based on this technology. Comparing experimental and simulated results, it was possible to notice that when the structure is designed with gate underlap related to channel/drain junction and the temperature decreases, it was possible to obtain promising values for subthreshold slope and ION/IOFF ratio. Based on the analyses of these individual results, basic analog circuits have been designed, namely current mirror and differential pair, so that two different tunneling devices structures have been highlighted. Experimental measurements and numeric simulations have been performed for both circuits, under different conditions in terms of bias voltages, channel length mismatch and operation temperature. The impact on fundamental circuit parameters, such as compliance voltage, current mirroring ratio and differential voltage gain, has been compared for circuits designed with Point TFETs, Line TFETs and FinFETs. Regarding current mirror circuits, the obtained results revealed higher values of compliance voltage and lower susceptibility to the temperature for circuits designed with tunneling transistors. In addition, Point TFETs provided the lowest susceptibility to channel length mismatch, but also the worst values of reference currents, when compared to circuits with Line TFETs and FinFETs. Following the same procedure for differential pair, higher compliance voltage was obtained for FinFETs, while both tunneling transistors structures presented better behavior for differential voltage gain susceptibility to temperature variation. Once more, pairs with Point TFETs showed the best performance in terms of channel length mismatch, but the worst magnitude of differential voltage gain. This way, general equations have been proposed to model relevant parameters for the circuits designed with each technology. From an overall point of view, it was possible to support the suitability of optimizing tunneling transistors in order to obtain devices with favorable individual parameters and positive impacts on essential analog circuits, reassuring the relevance of this promising technology.
4

AlGaSb/InAs vertical tunnel field effect transistors for low power electronics / Transistors à effet tunnel vertical à hétérojonction AlGaSb/InAs pour électronique basse consommation

Chinni, Vinay Kumar 28 March 2017 (has links)
Depuis une dizaine d’années, la miniaturisation des circuits microélectroniques silicium est freinée par l’augmentation de la densité de puissance consommée car la réduction de la tension d’alimentation n’a pas suivi celle des dimensions. Cela est inhérent au mécanisme thermo-ionique d’injection des porteurs dans les transistors de type MOSFET et conduit à envisager un mécanisme d’injection des porteurs différent, basé sur l’effet tunnel. Pour être efficace, cette solution doit s’accompagner de l’introduction de semi-conducteurs III-V à faible masse effective et petite bande interdite. Parmi ces derniers, l’hétérojonction (Al)GaSb/InAs semble prometteuse grâce à la possibilité de passer d’un alignement des bandes de type "échelon" à "brisé". Ce travail de thèse porte sur la fabrication de transistors à effet tunnel (TFET) à base d’héterostructures (Al)GaSb/InAs. L’influence des paramètres matériaux et géométriques sur les performances du transistor a été évaluée à l’aide des simulations utilisant le logiciel Silvaco. Le développement d’un procédé technologique complet de fabrication de diodes et transistors verticaux de taille nanométrique a ensuite permis la réalisation d’un TFET sur substrat GaAs. Sa caractérisation électrique a révélé un courant dans l’état ON de 433 μA/μm à VDS = VGS = 0.5 V. A basse température, une pente sous le seuil de 71 mV/décade et un rapport ON/OFF de 6 décades ont été obtenus. Ce compromis à l’état de l’art entre courant ON et capacité de commutation démontre que le TFET à base de l’hétérojonction (Al)GaSb/InAs pourrait constituer une alternative de choix pour les technologies futures après optimisation de l’empilement de grille. / Silicon microelectronics is facing a power consumption crisis for around ten years since the scaling of the supply voltage has not followed that of the transistor dimensions. This is mainly due to the inherent limits of the silicon MOSFETs, based on the thermionic injection mechanism of the carriers. Going to a tunneling injection mechanism is therefore very appealing but, to be efficient, this should go along with the introduction of low effective mass and small bang gap III-V semiconductors. Among them, the (Al)GaSb/InAs heterojunction is very attractive due to the ability to tune the band alignment from staggered to broken gap which eventually results in large tunneling current densities. In this PhD work, the fabrication of tunnel field effect transistors (TFETs) based on AlGaSb/InAs heterostructures grown by molecular beam epitaxy is investigated. First the impact of the basic material and geometrical parameters on the device performances has been simulated using Silvaco TCAD software. A complete technological process for the fabrication of nanoscale vertical tunnel diodes and tunneling transistors has then been developed and has led to the achievement of a vertical TFET on a GaAs substrate. The electrical characterization of this device has been carried out exhibiting an ON-current of 433 μA/μm at VDS = VGS = 0.5 V. At low temperature, a subthreshold swing of 71 mV/decade and a 6 decade ON/OFF ratio at 0.1 V are demonstrated. This state-of-the-art trade-off between ON current and switching properties indicates that the (Al)GaSb/InAs TFET may be a valuable solution for beyond CMOS technology after further improvement of the gate stack process.
5

Theoretical sStudy of In-plane Heterojunctions of Transition-metal Dichalcogenides and their Applications for Low-power Transistors / Etude théorique des hétérojonctions planaires de dichalcogénures de métaux de transition et de leurs applications pour des transistors à basse consommation

Choukroun, Jean 14 December 2018 (has links)
La miniaturisation des MOSFET a permis une forte diminution des transistors et des puces, ainsi qu’une augmentation exponentielle des capacités de calcul. Cette miniaturisation ne peut néanmoins continuer ainsi: de nos jours, un microprocesseur peut contenir des dizaines de milliards de transistors et la chaleur dégagée par ces composants peut fortement détériorer ses performances. De plus, du fait de leur principe même de fonctionnement, la tension d’alimentation des MOSFET ne peut être réduite sans en impacter les performances. De nouvelles architectures telles que le TFET -basé sur l’effet tunnel bande-à-bande et pouvant fonctionner à des tensions d’alimentation très basses- ainsi que de nouveaux matériaux pourraient donc apporter une alternative au MOSFET silicium. Les monocouches de dichalcogènures de métaux de transitions (TMDs) -des semiconducteurs à bande interdite directe d’environ 1 à 2 eV- possèdent un fort potentiel pour l’électronique et la photonique. De plus, dans le cas de contraintes appropriées, ils peuvent conduire un alignement de bandes présentant un broken-gap; cette configuration permet de surpasser les limites habituelles du TFETs, à savoir de faibles courants dus à l’effet tunnel sur lequel ces dispositifs reposent. Dans ce travail de thèse, des hétérojonctions planaires de TMD sont modélisées via une approche atomistique de liaisons fortes, et une configuration broken-gap est observée dans deux d’entre elles (MoTe2/MoS2 et WTe2/MoS2). Leur potentiel dans le cadre de transistors à effet tunnel (TFETs) est évalué au moyen de simulations de transport quantique basées sur un modèle TB atomistique ainsi que la théorie des fonctions de Green hors-équilibre. Des TFETs type-p et type-n basés sur ces hétérojonctions sont simulés et présentent des courants ON élevés (ION > 103 µA/µm) ainsi que des pentes sous-seuil extrêmement raides (SS < 5 mV/dec) à des tensions d’alimentation très faibles (VDD = 0.3 V). Plusieurs architectures novatrices basées sur ces TFETs et découlant de la nature 2D des matériaux utilisés sont également présentées, et permettent d’atteindre des performances encore plus élevées. / Nowadays, microprocessors can contain tens of billions of transistors and as a result, heat dissipation and its impact on device performance has increasingly become a hindrance to further scaling. Due to their working mechanism, the power supply of MOSFETs cannot be reduced without deteriorating overall performance, and Si-MOSFETs scaling therefore seems to be reaching its end. New architectures such as the TFET, which can perform at low supply voltages thanks to its reliance on band-to-band tunneling, and new materials could solve this issue. Transition metal dichalcogenide monolayers (TMDs) are 2D semiconductors with direct band gaps ranging from 1 to 2 eV, and therefore hold potential in electronics and photonics. Moreover, when under appropriate strains, their band alignment can result in broken-gap configurations which can circumvent the traditionally low currents observed in TFETs due to the tunneling mechanism they rely upon. In this work, in-plane TMD heterojunctions are investigated using an atomistic tight-binding approach, two of which lead to a broken-gap configuration (MoTe2/MoS2 and WTe2/MoS2). The potential of these heterojunctions for use in tunnel field-effect transistors (TFETs) is evaluated via quantum transport computations based on an atomistic tight-binding model and the non-equilibrium Green’s function theory. Both p-type and n-type TFETs based on these in-plane TMD heterojunctions are shownto yield high ON currents (ION > 103 µA/µm) and extremely low subthreshold swings (SS < 5 mV/dec) at low supply voltages (VDD = 0.3 V). Innovative device architectures allowed by the 2D nature of these materials are also proposed, and shown to enhance performance even further.
6

Estudo de transistores de tunelamento induzido por efeito de campo (TFET) construídos em nanofio. / Study of nanowire tunneling field effect transistors (TFET).

Sivieri, Victor De Bodt 26 February 2016 (has links)
Esse trabalho de mestrado teve como estudo o transistor Túnel-FET (TFET) fabricado em estrutura de nanofio de silício. Este estudo foi feito de forma teórica (simulação numérica) e experimental. Foram estudadas as principais características digitais e analógicas do dispositivo e seu potencial para uso em circuitos integrados avançados para a próxima década. A análise foi feita através da extração experimental e estudo dos principais parâmetros do dispositivo, tais como inclinação de sublimiar, transcondutância (gm), condutância de saída (gd), ganho intrínseco de tensão (AV) e eficiência do transistor. As medidas experimentais foram comparadas com os resultados obtidos pela simulação. Através do uso de diferentes parâmetros de ajuste e modelos de simulação, justificou-se o comportamento do dispositivo observado experimentalmente. Durante a execução deste trabalho estudou-se a influência da escolha do material de fonte no desempenho do dispositivo, bem como o impacto do diâmetro do nanofio nos principais parâmetros analógicos do transistor. Os dispositivos compostos por fonte de SiGe apresentaram valores maiores de gm e gd do que aqueles compostos por fonte de silício. A diferença percentual entre os valores de transcondutância para os diferentes materiais de fonte variou de 43% a 96%, sendo dependente do método utilizado para comparação, e a diferença percentual entre os valores de condutância de saída variou de 38% a 91%. Observou-se também uma degradação no valor de AV com a redução do diâmetro do nanofio. O ganho calculado a partir das medidas experimentais para o dispositivo com diâmetro de 50 nm é aproximadamente 45% menor do que o correspondente ao diâmetro de 110 nm. Adicionalmente estudou-se o impacto do diâmetro considerando diferentes polarizações de porta (VG) e concluiu-se que os TFETs apresentam melhor desempenho para baixos valores de VG (houve uma redução de aproximadamente 88% no valor de AV com o aumento da tensão de porta de 1,25 V para 1,9 V). A sobreposição entre porta e fonte e o perfil de dopantes na junção de tunelamento também foram analisados a fim de compreender qual combinação dessas características resultariam em um melhor desempenho do dispositivo. Observou-se que os melhores resultados estavam associados a um alinhamento entre o eletrodo de porta e a junção entre fonte e canal e a um perfil abrupto de dopantes na junção. Por fim comparou-se a tecnologia MOS com o TFET, obtendo-se como resultado um maior valor de AV (maior do que 40 dB) para o TFET. / This Master thesis focused in the study of the NW-TFET. The study was performed either by simulation as by experimental measurements. The main digital and analog characteristics of the device and its potential for use in advanced integrated circuits for the next decade were studied. The analysis was performed by extracting and studying the devices main parameters, such as subthreshold swing, transconductance (gm), output conductance (gd), intrinsic voltage gain (AV) and transistor efficiency. The experimental measurements were compared with the results obtained by simulation. Utilizing different simulation fitting parameters and models, the device behavior (observed in the experimental measurements) was understood and explained. During the execution of this work, either the influence of the source material on the device performance, as the impact of the nanowire diameter on the transistor main analog parameters, were studied. The devices with SiGe source presented higher values of gm and gd than those with silicon source. The percentual difference among the values of transconductance for the different source materials varied from 43% to 96%, being dependent on the method utilized for the comparison, and the percentual difference among the values of output conductance varied from 38% to 91%. A degradation of AV was also observed with the nanowire diameter reduction. The gain calculated from the experimental measurements for the device with 50 nm of diameter is approximately 57% lower than the gain corresponding to the diameter of 110 nm. Furthermore, the impact of the diameter considering different gate biases (VG) was analysed. It was concluded that TFETs show improved performance for lower values of VG (a reduction of approximately 88% of AV was observed for an increase of the gate voltage from 1.25 V to 1.9 V). The gate/source overlap length and the dopant profile at the tunneling junction were also analyzed in order to understand which combination of this features would result in a better performance of the device. It was observed that the best results were related to an alignment between the gate electrode and the source/channel junction and to an abrupt dopant profile at the junction. Finally, the MOS technology was compared with TFET, resulting in a higher AV (higher than 40 dB) for the TFET.
7

Etude de nano-transistors à faible pente sous le seuil pour des applications très basse consommation / Steep slope nano-transistors for ultra low power applications

Villalon, Anthony 10 December 2014 (has links)
Le transistor à effet tunnel bande à bande (TFET) est une architecture PIN à grille capable d’obtenir une pente sous le seuil inférieure à 60mV/dec à température ambiante, ce qui représente un avantage par rapport au MOSFET dans le cas d’applications basse consommation. L’objectif de cette thèse est d’étudier et de caractériser des TFETs fabriqués au CEA-LETI (sur substrats SOI avec les procédés standards CMOS), afin de comprendre et d’optimiser ces dispositifs. La première génération de TFETs a été réalisée en architecture planaire (FDSOI) et fournit une étude sur l’impact de l’hétérojonction canal source, de l’épaisseur du canal et de la température de recuit sur les performances. La seconde génération a été réalisée en architecture nanofil SiGe planaire, dont l’impact de la géométrie a été étudié en détail. Les mesures ont permis de valider l’injection par effet tunnel bande à bande, et les performances observées ont été comparées à la littérature et aux MOSFET. Par ailleurs, des caractérisations avancées ont également mené à une meilleure compréhension des caractéristiques de sortie courant-tension. Finalement, des mesures basse température nous avons confirmé la présence de défauts proches des jonctions (à l’origine des limitations de pente sous le seuil) et ainsi proposé des voies d’optimisation pour s’en affranchir. / Band to band tunneling field effect transistor (TFET) is a PIN-gated architecture able to reach sub 60mV/dec subthreshold slopes at room temperature, which is an advantage over MOSFET in low power applications. The objective of this thesis is to study and characterize TFETs fabricated in CEA-LETI using MOSFET SOI technology. The first generation of devices is realized on planar FDSOI technology, and studies the impact of source/channel heterojunction, channel thickness and annealing temperature on device performances. The second generation is planar SiGe nanowire architecture, with research focusing on the impact of the wire geometry. Through measurements we were able to prove the band to band tunneling injection, while the reported performances were compared with literature and with MOSFET. Furthermore, advanced characterizations led to a better understanding of the output characteristics. Through low temperature measurements we confirmed existence of defects close to the junctions (which cause slope degradation), as well as on which process steps to improve in the future.
8

Estudo de transistores de tunelamento induzido por efeito de campo (TFET) construídos em nanofio. / Study of nanowire tunneling field effect transistors (TFET).

Victor De Bodt Sivieri 26 February 2016 (has links)
Esse trabalho de mestrado teve como estudo o transistor Túnel-FET (TFET) fabricado em estrutura de nanofio de silício. Este estudo foi feito de forma teórica (simulação numérica) e experimental. Foram estudadas as principais características digitais e analógicas do dispositivo e seu potencial para uso em circuitos integrados avançados para a próxima década. A análise foi feita através da extração experimental e estudo dos principais parâmetros do dispositivo, tais como inclinação de sublimiar, transcondutância (gm), condutância de saída (gd), ganho intrínseco de tensão (AV) e eficiência do transistor. As medidas experimentais foram comparadas com os resultados obtidos pela simulação. Através do uso de diferentes parâmetros de ajuste e modelos de simulação, justificou-se o comportamento do dispositivo observado experimentalmente. Durante a execução deste trabalho estudou-se a influência da escolha do material de fonte no desempenho do dispositivo, bem como o impacto do diâmetro do nanofio nos principais parâmetros analógicos do transistor. Os dispositivos compostos por fonte de SiGe apresentaram valores maiores de gm e gd do que aqueles compostos por fonte de silício. A diferença percentual entre os valores de transcondutância para os diferentes materiais de fonte variou de 43% a 96%, sendo dependente do método utilizado para comparação, e a diferença percentual entre os valores de condutância de saída variou de 38% a 91%. Observou-se também uma degradação no valor de AV com a redução do diâmetro do nanofio. O ganho calculado a partir das medidas experimentais para o dispositivo com diâmetro de 50 nm é aproximadamente 45% menor do que o correspondente ao diâmetro de 110 nm. Adicionalmente estudou-se o impacto do diâmetro considerando diferentes polarizações de porta (VG) e concluiu-se que os TFETs apresentam melhor desempenho para baixos valores de VG (houve uma redução de aproximadamente 88% no valor de AV com o aumento da tensão de porta de 1,25 V para 1,9 V). A sobreposição entre porta e fonte e o perfil de dopantes na junção de tunelamento também foram analisados a fim de compreender qual combinação dessas características resultariam em um melhor desempenho do dispositivo. Observou-se que os melhores resultados estavam associados a um alinhamento entre o eletrodo de porta e a junção entre fonte e canal e a um perfil abrupto de dopantes na junção. Por fim comparou-se a tecnologia MOS com o TFET, obtendo-se como resultado um maior valor de AV (maior do que 40 dB) para o TFET. / This Master thesis focused in the study of the NW-TFET. The study was performed either by simulation as by experimental measurements. The main digital and analog characteristics of the device and its potential for use in advanced integrated circuits for the next decade were studied. The analysis was performed by extracting and studying the devices main parameters, such as subthreshold swing, transconductance (gm), output conductance (gd), intrinsic voltage gain (AV) and transistor efficiency. The experimental measurements were compared with the results obtained by simulation. Utilizing different simulation fitting parameters and models, the device behavior (observed in the experimental measurements) was understood and explained. During the execution of this work, either the influence of the source material on the device performance, as the impact of the nanowire diameter on the transistor main analog parameters, were studied. The devices with SiGe source presented higher values of gm and gd than those with silicon source. The percentual difference among the values of transconductance for the different source materials varied from 43% to 96%, being dependent on the method utilized for the comparison, and the percentual difference among the values of output conductance varied from 38% to 91%. A degradation of AV was also observed with the nanowire diameter reduction. The gain calculated from the experimental measurements for the device with 50 nm of diameter is approximately 57% lower than the gain corresponding to the diameter of 110 nm. Furthermore, the impact of the diameter considering different gate biases (VG) was analysed. It was concluded that TFETs show improved performance for lower values of VG (a reduction of approximately 88% of AV was observed for an increase of the gate voltage from 1.25 V to 1.9 V). The gate/source overlap length and the dopant profile at the tunneling junction were also analyzed in order to understand which combination of this features would result in a better performance of the device. It was observed that the best results were related to an alignment between the gate electrode and the source/channel junction and to an abrupt dopant profile at the junction. Finally, the MOS technology was compared with TFET, resulting in a higher AV (higher than 40 dB) for the TFET.
9

Estudo de transistores de tunelamento controlados por efeito de campo. / Study of tunnel field effect transistors.

Martino, Márcio Dalla Valle 26 March 2012 (has links)
Este trabalho apresenta o estudo de transistores de tunelamento controlados por efeito de campo, denominados TFETs. Foram realizadas análises com base em explicação teórica, simulação numérica e medidas experimentais para demonstrar a viabilidade do uso desta tecnologia como alternativa para permitir o contínuo escalamento de dispositivos. A motivação para o uso de transistores com corrente principal resultante do tunelamento de banda para banda consiste na proposta de superar o limite físico de inclinação de sublimiar da tecnologia CMOS convencional de 60 mV/década sob temperatura ambiente. Afinal, esta limitação impede a redução na tensão de alimentação de circuitos e, consequentemente, apresenta crescentes problemas quanto à dissipação de potência. Com este objetivo, foram realizadas simulações numéricas de diversas geometrias alternativas visando atenuar as características indesejáveis dos TFETs, como a corrente ambipolar e a relativamente baixa relação ION/IOFF. Inicialmente são definidos os modelos necessários para representar adequadamente os fenômenos relevantes sob variação de temperatura e é definida uma estrutura capaz de minimizar os efeitos da ambipolaridade. Posteriormente, medidas experimentais foram utilizadas para calibrar as simulações e estudar o efeito da temperatura e do dimensionamento no funcionamento de dispositivos desta tecnologia. Comparando resultados práticos e simulados, nota-se como uma redução no comprimento de porta, com a consequente inserção de uma subposição (underlap) em relação à junção canal/dreno, e uma diminuição na temperatura permitem a obtenção de valores promissores de inclinação de sublimiar e de relação ION/IOFF, compatível com a proposta de futuras aplicações digitais e analógicas. / This works presents the study of tunneling field effect transistors, namely TFETs. Analyses were performed based on theoretical explanations, numerical simulations and experimental data in order to show this technology suitability as an alternative for the continuous devices scaling. The basic idea of making use of band-to-band tunneling as the main current component comes from the possibility of reaching sub-60 mV/decade subthreshold slopes at room temperature, differently from conventional CMOS devices. After all, this physical limitation causes relevant power dissipation issues, since it requires relatively high power supply voltages. Bearing this objective, numerical simulations of several alternative geometries were performed in order to tackle TFETs disadvantages, as the undesirable ambipolar currents and the low ION/IOFF ratio. At first, it was necessary to choose the most appropriate models to take into consideration the relevant phenomena under temperature variation and to define the physical structure in order to minimize ambipolar effects. After these analyses, experimental data were used to calibrate simulation parameters and to study how temperature and physical dimensions affect the performance of devices based on this technology. Comparing experimental and simulated results, it was possible to notice that when the structure is designed with gate underlap related to channel/drain junction and the temperature decreases, the obtained values for subthreshold slope and ION/IOFF ratio may be used as an important reference of this technology as a promising alternative for both digital and analog applications.
10

Estudo de transistores de tunelamento controlados por efeito de campo. / Study of tunnel field effect transistors.

Márcio Dalla Valle Martino 26 March 2012 (has links)
Este trabalho apresenta o estudo de transistores de tunelamento controlados por efeito de campo, denominados TFETs. Foram realizadas análises com base em explicação teórica, simulação numérica e medidas experimentais para demonstrar a viabilidade do uso desta tecnologia como alternativa para permitir o contínuo escalamento de dispositivos. A motivação para o uso de transistores com corrente principal resultante do tunelamento de banda para banda consiste na proposta de superar o limite físico de inclinação de sublimiar da tecnologia CMOS convencional de 60 mV/década sob temperatura ambiente. Afinal, esta limitação impede a redução na tensão de alimentação de circuitos e, consequentemente, apresenta crescentes problemas quanto à dissipação de potência. Com este objetivo, foram realizadas simulações numéricas de diversas geometrias alternativas visando atenuar as características indesejáveis dos TFETs, como a corrente ambipolar e a relativamente baixa relação ION/IOFF. Inicialmente são definidos os modelos necessários para representar adequadamente os fenômenos relevantes sob variação de temperatura e é definida uma estrutura capaz de minimizar os efeitos da ambipolaridade. Posteriormente, medidas experimentais foram utilizadas para calibrar as simulações e estudar o efeito da temperatura e do dimensionamento no funcionamento de dispositivos desta tecnologia. Comparando resultados práticos e simulados, nota-se como uma redução no comprimento de porta, com a consequente inserção de uma subposição (underlap) em relação à junção canal/dreno, e uma diminuição na temperatura permitem a obtenção de valores promissores de inclinação de sublimiar e de relação ION/IOFF, compatível com a proposta de futuras aplicações digitais e analógicas. / This works presents the study of tunneling field effect transistors, namely TFETs. Analyses were performed based on theoretical explanations, numerical simulations and experimental data in order to show this technology suitability as an alternative for the continuous devices scaling. The basic idea of making use of band-to-band tunneling as the main current component comes from the possibility of reaching sub-60 mV/decade subthreshold slopes at room temperature, differently from conventional CMOS devices. After all, this physical limitation causes relevant power dissipation issues, since it requires relatively high power supply voltages. Bearing this objective, numerical simulations of several alternative geometries were performed in order to tackle TFETs disadvantages, as the undesirable ambipolar currents and the low ION/IOFF ratio. At first, it was necessary to choose the most appropriate models to take into consideration the relevant phenomena under temperature variation and to define the physical structure in order to minimize ambipolar effects. After these analyses, experimental data were used to calibrate simulation parameters and to study how temperature and physical dimensions affect the performance of devices based on this technology. Comparing experimental and simulated results, it was possible to notice that when the structure is designed with gate underlap related to channel/drain junction and the temperature decreases, the obtained values for subthreshold slope and ION/IOFF ratio may be used as an important reference of this technology as a promising alternative for both digital and analog applications.

Page generated in 0.4119 seconds