Spelling suggestions: "subject:"plasmon"" "subject:"splasmon""
1 |
Design of Elemental Nanoparticles and their Application in Catalysis, Lithography and BiochemistryFasciani, Chiara January 2014 (has links)
The interest in metal nanoparticles has seen an exponential growth in the last twenty years, due to the astonishing properties these materials possess on the nanometer size scale. Compared to the bulk metal, nanoparticles present different optical and physical properties, which can be tuned according to their size or shape. As an example, colloidal solutions of 15 nm gold nanoparticles appear red, a very different tint as compare to the typical gold color of a gold brick. The reason for this variation is due to the fact that visible light wavelengths are bigger than the nanoparticles sizes. Therefore, after excitation, part of the light is absorbed and produces a coherent oscillation of the surface electrons, resulting in a phenomenon known as surface plasmon resonance. At this point the system tends to return to the initial state, following different pathways. One of the processes occurring is the local release of heat around the nanoparticle surface.
The aim of this thesis is to gain more insight into the actual temperature values achievable after plasmon irradiation and to explore the possible applications of the localized heat release. Synthetic procedures developed in the Scaiano group were used to synthesize and modify the nanoparticles. The applicability of these photochemical procedures was extended to the synthesis of bimetallic silver-gold (Ag/Au) core-shell materials via a controlled and facile synthesis method. Ag/Au core-shells combine the optical and physical properties of gold and silver together and they have shown promise as potential antimicrobial agents.
Information regarding the temperatures achievable after plasmon excitation has been obtained using dicumyl peroxide as a molecular thermometer and has indicated temperatures close to 500oC near the nanoparticle surface. This finding was a precious guideline for the selection of thermal processes that can be performed after plasmon excitation. The catalytic reduction of resazurin to resorufin was one of the reactions chosen. This process, indeed, appears significantly faster (nanoseconds) when performed using AuNP irradiated at 530 nm.
The use of laser and LED irradiations has been a constant throughout this work with both systems being to suite the experimental needs.
The high temperature reached irradiating metal nanoparticles has also been used to
trigger the caprolactam polymerization, in such a way that only in the light exposed position AgNP favored nylon formation, presenting promising applications in lithography.
Moreover, DNA melting processes have been successfully studied, by employing a switch On/Off controllable irradiation of AuNP, aiming for eventual application in the polymerase chain reaction (PCR) process.
Finally, considerable work has been done in the functionalization and modification of carbon-based materials. Functionalization with silver and gold nanoparticles has been performed using a photochemical procedure, during which a different behavior was observed for the two metals. In addition, modification of the reduced graphene oxide morphology was obtained by laser irradiation without the use of any external template. The spherical reduced graphene oxide, thus obtained, has shown promising potential in water splitting catalysis. In this system, the evolution of hydrogen was observed by employing only spherical reduced graphene oxide and visible light (532 nm laser or LED irradiation).
In summary, this thesis describes how light can not only be used to synthesize and modify nanomaterials, but also to perform high energetic processes at room temperature, taking advantage of the nanoscale properties of the materials being used.
|
2 |
Dispositifs électrooptique assistés plasmon en silicium / Plasmons assisted Si electro-optical devicesNambiar, Siddhath 20 December 2012 (has links)
Bien que les propriétés optiques des métaux nanostructurés soit connues depuis de nombreuses décennies, ce n'est que dans les dernières années que ce domaine a suscité un grand intérêt. Ceci est en partie dû aux nombreux progrès des techniques de nanofabrication. Le domaine de la plasmonique est souvent présentée comme la support de la prochaine génération de dispositifs de traitement de l'information, mélageant la nanoélectronique et la photonique silicium pour obtenir des disposotifs plus performants. Les systèmes microélectroniques actuels approchant de la saturation en terme de bande passante et de consomation énergétique, la migration vers les systèmes photoniques semble inévitable. La prédiction de la réponse électromagnétique de ces composants nano-photoniques est essentiels au succès de leur intégration réaliste. Les outils numériques de simulation électromagnétiques sont le moyen par excellence de calculer précisement er de manière réaliste les propriétés optiques de composants nanophotoniques, et en particulier ceux utilisant des plasmons de surface. Ce travail de thèse rend compte de l'analyse numérique de la propagation et des caractéristiques de champ proche de composants à base de plasmons pour la photonique en technologie CMOS. Les deux principaux outils de modélisation EM utilisés à cet égard sont la méthode des éléments des moments, ainsi que la FDTD. Deux types principaux de dispositifs actifs plasmoniques actifs ont été étudiés: d'une part les modulateurs électro-optiques intégrés et d'autre part des détecteurs à base de quantum dot de Ge, le tout dans la gamme du proche infrarouge. La question cruciale d'un couplage efficace de la lumière dans un mode très confiné plasmonique a d'abord été étudiée de manière à isoler la part modale des principales contributions. Ensuite, une nouvelle structure de modulateur assisté plasmon a été proposée et une conception optique complète prenant en compte les contraintes technologiques d'une fonderie CMOS est proposée et discutée. Enfin une conception optimisée du couplage radiatif de l'absorption d'un point de Ge, en utilisant une antenne dipolaire plasmonique, est étudiée. En particulier, l'ingénierie radiative du substrat SOI permet de démontrer un effet considérable sur la performance finale du dispositif. / Interest in the field of plasmonics has been primarily driven by the need to guide and confine light in the subwavelength scale. The past few years has witnessed a huge interest in this field largely due to the may advances that have occured in nanofabrication techniques. The field of plasmonics is often touted as the next generation platform that could interface nanoscale electronics and Si photonics. With current electronic systems nearing saturation, the migration to photonic systems would become inevitable. Crucial to achieving this integration is to design reliable plasmonic components within nanophotonics circuits. This however requires an accurate estimation of the electromagnetic response of these components. Numerical modeling tools are one way to gauge this response. By and large the thesis deals with numerically analysing the propagation and near field characteristics of plasmon based components for Si photonics. The two principal EM modelling tools used in this regard are the boundary element method as well as the finite difference time domain.Two main kind of active plasmonic active devices were investigated: integrated modulators, and free space radiation photodetectors. The critical issue of an efficient coupling of light into a very confined guided plasmonic mode was first investigated so as to isolate the main modal governing contributions. Next, a new structure of plasmon assisted modulator was proposed and a complete optical design taking into the technological constraints of a CMOS foundry is provided and discussed. Finally a design optimizing the radiative coupling to the absorption of a Ge dot, using a plasmonic dipolar antenna, is studied. In particular the radiative engineering of the supporting SOI substrate is shown to have a tremendous
|
3 |
Biomolecular conformational change : possibilities for the development of a measurement strategy for biosensingPaynter, Sally January 2001 (has links)
No description available.
|
4 |
Self-assembled monolayers : spectroscopic characterisation and molecular recognitionRevell, David Jon January 1999 (has links)
No description available.
|
5 |
Optical microscopy for high resolution and high sensitivity imaging of biological samplesLiu, Shugang January 2002 (has links)
No description available.
|
6 |
Optimal Design of Focusing Nanoantennas for Light : Novel Approaches: From Evolution to Mode-Matching / Optimierung von Nano-Antennen zur Fokussierung von Licht: Neue Ansätze: Von Evolution zu Moden-AnpassungFeichtner, Thorsten January 2017 (has links) (PDF)
Optische Antennen arbeiten ähnlich wie Antennen für Radiowellen und wandeln elektromagnetische Strahlung in elektrische Wechselströme um. Ladungsdichteansammlungen an der Antennen-Oberfläche führen zu starken und lokalisierten Nahfeldern. Da die meisten optischen Antennen eine Ausdehnung von wenigen hundert Nanometern besitzen, ermöglichen es ihre Nahfelder, Licht auf ein Volumen weit unterhalb des Beugungslimits zu fokussieren, mit Intensitäten, die mehrere Größenordnungen über dem liegen, was man mit klassischer beugender und reflektierender Optik erreichen kann. Die Aufgabe, die Abstrahlung eines Quantenemitters zu maximieren, eines punktförmigen Objektes, welches einzelne Photonen absorbieren und emittieren kann, ist identisch mit der Aufgabe, die Feldintensität am Ort des Quantenemitters zu maximieren. Darum ist es erstrebenswert, den Fokus optischer Antennen zu optimieren
Optimierte Radiofrequenz-Antennen, welche auf Größenordnungen von wenigen 100 Nanometern herunterskaliert werden, zeigen bereits eine gute Funktionalität. Jedoch liegen optische Frequenzen in der Nähe der Plasmafrequenz von den Metallen, die für optische Antennen genutzt werden und die Masse der Elektronen kann nicht mehr vernachlässigt werden. Dadurch treten neue physikalische Phänomene auf. Es entstehen gekoppelte Zustände aus Licht und Ladungsdichte-Schwingungen, die sogenannten Plasmonen. Daraus folgen Effekte wie Volumenströme und kürzere effektive Wellenlängen. Zusätzlich führt die endliche Leitfähigkeit zu thermischen Verluste. Das macht eine Antwort auf die Frage nach der optimalen Geometrie für fokussierende optische Antennen schwer. Jedoch stand vor dieser Arbeit der Beweis noch aus, dass es für optische Antennen bessere Alternativen gibt als herunterskalierte Radiofrequenz-Konzepte.
In dieser Arbeit werden optische Antennen auf eine bestmögliche Fokussierung optimiert. Dafür wird ein Ansatz gewählt, welcher bei Radiofrequenz-Antennen für komplexe Anwendungsfelder (z.B. isotroper Breitbandempfang) schon oft Erfolg hatte: evolutionäre Algorithmen. Die hier eingeführte erste Implementierung erlaubt eine große Freiheit in Bezug auf Partikelform und Anzahl, da sie quadratische Voxel auf einem planaren, quadratischen Gitter beliebig anordnet. Die Geometrien werden in einer binären Matrix codiert, welche als Genom dient und somit Methoden wie Mutation und Paarung als Verbesserungsmechanismus erlaubt. So optimierte Antennen-Geometrien übertreffen vergleichbare klassische Dipol-Geometrien um einen Faktor von Zwei. Darüber hinaus lässt sich aus den optimierten Antennen ein neues Funktionsprinzip ableiten: ein magnetische Split-Ring-Resonanz kann mit Dipol-Antennen leitend zu neuartigen und effektiveren Split-Ring-Antennen verbunden werden, da sich ihre Ströme nahe des Fokus konstruktiv überlagern.
Im nächsten Schritt wird der evolutionäre Algorithmus so angepasst, so die Genome real herstellbare Geometrien beschreiben. Zusätzlich wird er um eine Art ''Druckertreiber'' erweitert, welcher aus den Genomen direkt Anweisungen zur fokussierten Ionenstrahl-Bearbeitung von einkristallinen Goldflocken erstellt. Mit Hilfe von konfokaler Mikroskopie der Zwei-Photonen-Photolumineszenz wird gezeigt, dass Antennen unterschiedlicher Effizienz reproduzierbar aus dem evolutionären Algorithmus heraus hergestellt werden können. Außerdem wird das Prinzip der Split-Ring-Antenne verbessert, indem zwei Ring-Resonanzen zu einer Dipol-Resonanz hinzugefügt werden.
Zu guter Letzt dient die beste Antenne des zweiten evolutionäre Algorithmus als Inspiration für einen neuen Formalismus zur Beschreibung des Leistungsübertrages zwischen einer optischen Antenne und einem Punkt-Dipol, welcher sich als "dreidimensionaler Modenüberlapp" beschreiben lässt. Damit können erstmals intuitive Regeln für die Form einer optischen Antenne aufgestellt werden. Die Gültigkeit der Theorie wird analytisch für den Fall eines Dipols nahe einer metallischen Nano-Kugel gezeigt.
Das vollständige Problem, Licht mittels einer optischen Antenne zu fokussieren, lässt sich so auf die Erfüllung zweier Modenüberlapp-Bedingungen reduzieren -- mit dem Feld eines Punktdipols, sowie mit einer ebenen Welle. Damit lassen sich zwei Arten idealer Antennenmoden identifizieren, welche sich von der bekannten Dipol-Antennen-Mode grundlegend unterscheiden. Zum einen lässt sich dadurch die Funktionalität der evolutionären und Split-Ring-Antennen erklären, zum lassen sich neuartige plasmonische Hohlraum-Antennen entwerfen, welche zu besserer Fokussierung von Licht führen. Dies wird numerisch im direkten Vergleich mit einer klassischen Dipolantennen-Geometrie gezeigt. / Optical antennas work similar to antennas for the radio-frequency regime and convert electromagnetic radiation into oscillating electrical currents. Charge density accumulations form at the antenna surface leading to strong and localized near-fields. Since most optical antennas have dimensions of a few hundred nanometers, their near-fields allow the focusing of electromagnetic fields to volumes much smaller than the diffraction limit, with intensities several orders of magnitude larger than achievable with classical diffractive and refractive optical elements. The task to maximize the emission of a quantum emitter, a point-like entity capable of reception and emission of single photons, is identical to the task to maximize the field intensity at the position of the quantum emitter. Therefore it is desirable to optimize the capabilities of focusing optical antennas.
Radio-frequency-antenna designs scaled to optical dimensions of several hundred nanometers show already a decent performance. However, optical frequencies lie near the plasma frequency of the metals used for optical antennas and the mass of electrons cannot be neglected anymore. This leads to new physical phenomena. Light can couple to charge density oscillations, yielding a so-called Plasmon. Effects emerge which have no equivalent in the very advanced field of radio-frequency-technology, e.g.~volume currents and shortened effective wavelengths. Additionally the conductivity is not infinite anymore, leading to thermal losses. Therefore, the question for the optimal geometry of a focusing optical antenna is not easy to answer. However, up to now there was no evidence that there exist better alternatives for optical antennas than down-scaled radio-frequency designs.
In this work the optimization of focusing optical antennas is based on an approach, which often proved successful for radio-frequency-antennas in complex applications (e.g.~broadband and isotropic reception): evolutionary algorithms. The first implementation introduced here allows a large freedom regarding particle shape and count, as it arranges cubic voxels on a planar, square grid. The geometries are encoded in a binary matrix, which works as a genome and enables the methods of mutation and crossing as mechanism of improvement. Antenna geometries optimized in this way surpass a comparable dipolar geometry by a factor of 2. Moreover, a new working principle can be deduced from the optimized antennas: a magnetic split-ring resonance can be coupled conductively to dipolar antennas, to form novel and more effective split-ring-antennas, as their currents add up constructively near the focal point.
In a next step, the evolutionary algorithm is adapted so that the binary matrices describe geometries with realistic fabrication constraints. In addition a 'printer driver' is developed which converts the binary matrices into commands for focused ion-beam milling in mono-crystalline gold flakes. It is shown by means of confocal two-photon photo-luminescence microscopy that antennas with differing efficiency can be fabricated reliably directly from the evolutionary algorithm. Besides, the concept of the split-ring antenna is further improved by adding this time two split-rings to the dipole-like resonance.
The best geometry from the second evolutionary algorithm inspires a fundamentally new formalism to determine the power transfer between an antenna and a point dipole, best termed 'three-dimensional mode-matching'. Therewith, for the first time intuitive design rules for the geometry of an focusing optical antenna can be deduced. The validity of the theory is proven analytically at the case of a point dipole in from of a metallic nano sphere.
The full problem of focusing light by means of an optical antenna can, thus, be reduced to two simultaneous mode-matching conditions -- on the one hand with the fields of a point dipole, on the other hand with a plane wave. Therefore, two types of ideal focusing optical antenna mode patterns are identified, being fundamentally different from the established dipolar antenna mode. This allows not only to explain the functionality of the evolutionary antennas and the split-ring antenna, but also helps to design novel plamonic cavity antennas, which lead to an enhanced focusing of light. This is proven numerically in direct comparison to a classical dipole antenna design.
|
7 |
Development of surface chemistries and protein arrays for surface plasmon resonance sensing in complex media /Ladd, Jon J. January 2008 (has links)
Thesis (Ph. D.)--University of Washington, 2008. / Vita. Includes bibliographical references (leaves 125-136).
|
8 |
Active metal-insulator-metal plasmonic devicesDiest, Kenneth Alexander. Atwater, Harry A. Atwater, Harry A. January 1900 (has links)
Thesis (Ph. D.) -- California Institute of Technology, 2010. / Title from home page (viewed 2/25/2010). Advisor and committee chair names found in the thesis' metadata record in the digital repository. Includes bibliographical references.
|
9 |
Fabrication and characterization of a plasmonic biosensor using non-spherical metal nanoparticlesJung, Bong-Su, 1972- 28 August 2008 (has links)
Label-free detection techniques have an important role in many applications, such as situations where few molecules -- rather than low molarity -- need to be detected, such as in single-cell screening. While surface plasmon resonance (SPR) scattering from metal nanoparticles has been shown to achieve significantly higher sensitivity in gene arrays, such an approach has not been demonstrated for protein arrays. SPR-based sensors could either use simple absorption measurement in a UV-Vis spectrometer or possibly surfaceenhanced Raman spectroscopy as the detection mechanism for molecules of interest. However, non-spherical particles are needed to achieve high sensitivity and field enhancement that is a requirement in both techniques, but these shapes are not easy toproduce reproducibly and preserve for extended periods of time. Here I present a carbonbased template-stripping method combined with nanosphere lithography (NSL). This fabrication allows to preserve the sharp features in atomically flat surfaces which are a composite of a non-spherical metal nano-particle (gold or silver) and a transparent embedding material such as glass. The stripping process is residue-free due to the introduction of a sacrificial carbon layer. The nanometer scale flat surface of our template stripping process is also precious for general protein absorption studies, because an inherent material contrast can resolve binding of layers on the 2 nm scale. These nanocomposite surfaces also allow us to tailor well-defined SPR extinction peaks with locations in the visible or infrared spectrum depending on the metal and the particle size and the degree of non-symmetry. As the particle thickness is reduced and the particle bisector length is increased, the peak position of the resonance shifts to the red. Not only the peak position shifts, but also the sensitivity to environmental changes increases. Therefore, the peak position of the resonance spectrum is dependent on the dielectric environmental changes of each particle, and the particle geometries. The resulting silver or gold nanoparticles in the surface of a glass slide are capable of detecting thiol surface modification, and biotin-streptavidin protein binding events. Since each gold or silver particle principally acts as an independent sensor, on the order of a few thousand molecules can be detected, and the sensor can be miniaturized without loss of sensitivity. UNSL-Au metal nanoparticle (MNP) sensors achieve the sensitivity of close to 300 nm/RIU which is higher than any other report of localized surface plasmon resonance (LSPR) sensors except gold nanocrescents. Finite-difference-time-domain (FDTD) and finite-element-method (FEM) numerical calculations display the influence of the sharp features on the resonance peak position. The maximum near-field intensity is dependent on the polarization direction, the sharpness of the feature, and the near-field confinement from the substrate. 3D FDTD simulation shows the local refractive index sensitivity of the gold truncated tetrahedron, which is in agreement with our experimental result. Both experimental and numerical calculations show that each particle can act as its own sensor.
|
10 |
Engineering of surface plasmon resonance nanohole sensingDas, Mandira 18 October 2011 (has links)
A spectrally integrated response method is proposed for analyzing transmission data from nanohole array sensors. This method increases the sensitivity by reducing noise and taking more information from the spectrum for bulk and surface sensing. Results from both real experiments and idealized simulations are presented. Comparison with two other methods- peak transmission wavelength shift and a normalized difference integrated response method are shown. This method shows improved sensing performance which can be exploited in future.
Further improvement in sensing using nanohole arrays is explored by improving the instrumentation of the sensor system. Design parameters of the nanohole arrays for transmission at two different operating wavelengths were examined by using finite difference time domain simulations. Focused ion beam milling was used to fabricate chosen arrays. A microfluidic chip with the embedded nanohole array sensor was used to introduce different solutions for bulk chemical sensing. Intensity measurements were taken with a high speed CMOS camera. Sensing results using this system with possible improvements shows promise for future sensing applications. / Graduate
|
Page generated in 0.0411 seconds