• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

QUANTIFICATION OF THERMAL BRIDGING EFFECTS IN COLD-FORMED STEEL WALL ASSEMBLIES

Kapoor, Divyansh 08 April 2020 (has links)
Thermal bridging can be defined as the phenomenon where a structural element spanning the building envelope acts like a thermal pathway which collects and moves energy (heat) from the interior to the exterior of the structure. CFS construction, due to the high thermal conductivity of steel with respect to its surrounding structural components and repetitive nature of framing, is highly prone to thermal bridging. Thermal bridging significantly alters the thermal performance of wall assemblies. Hence, the objective of this research project was to quantify the magnitude of energy loss through cold-formed steel (CFS) stud wall assemblies at a component level to lay the groundwork for future works that promote sustainable, energy-efficient, and improved building design recommendations. Therefore, a parametric evaluation was performed using ISO 10211:2007, Annex A, conforming heat transfer software Blocon Heat3 version 8 to generate the data required for analysis. 80 unique wall assemblies and the impact of selected parameters on the overall thermal transmittance of the wall assembly were studied as part of the parametric evaluation. The key variables of the study are steel thickness, stud depth, stud spacing, cavity insulation R-value, external insulation thickness (R-value), and fastener diameter and length. Based on the results of the analysis, effects of increasing stud and track thickness, depth, and stud spacing have been discussed in the form of trends in overall heat flow and linear thermal transmittance coefficient values. Additionaly, effects of increasing external insulation have been discussed by addressing changes in heat flow.

Page generated in 0.0912 seconds