Spelling suggestions: "subject:"bthermal bridging"" "subject:"bthermal ridging""
1 |
Long term thermal performance and application of glass fiber core vacuum insulation panelsChan, Vivian 22 December 2020 (has links)
Glass fiber core Vacuum Insulation Panels (VIPs) have thermal performance per unit thickness of about 5-10 times higher than the traditionally used building insulation materials such as mineral wool, XPS, EPS, foam, etc. This advantage of VIP has made it very attractive new option for innovative building designs. Especially in Canada, where some of the areas have long and very cold winters.
Confidence in the service life of a building material is necessary before putting a product to market. Extensive research has been conducted on the product development, quality improvement, and field application of VIPs around the world. However, there is lack of consistent and simple prediction method for the long-term thermal performance of VIPs.
This paper discussed the process and performance of a field project using glass fiber VIPs to retrofit a commercial building in Yukon, Canada. The thermal performance of the VIPs used in this project was continuously monitored and critically analyzed since the start in 2011. The results have shown satisfactory thermal performance of VIPs for the past 8 years. The findings were also used to validate glass fiber core VIP accelerated aging tests conducted by the National Research Council Canada (Ottawa), and the aging rate of VIPs in a cold and dry climate was determined.
The second part of this study investigated the monitored performance results from two sets of simplified accelerated laboratory aging tests, the results were analyzed with the aim to separate the impact of air diffusion from water vapour on the long-term thermal performance of glass fiber VIPs.
In addition, this study also investigated the potential application of VIPs in balcony constructions to reduce heat transfer through thermal bridges. Computer modeling exercises, using a benchmarked (EN ISO 10211) three-dimensional transient and steady-state heat transfer simulation tool HEAT3, were carried out on the most optimal (thermal performance) balcony assemblies of wood framed buildings using VIP as insulation. This niche application of VIPs can significantly increase the energy efficiency of building envelopes/skins in extreme climates of Canada and elsewhere in the world. / Graduate / 2021-11-06
|
2 |
QUANTIFICATION OF THERMAL BRIDGING EFFECTS IN COLD-FORMED STEEL WALL ASSEMBLIESKapoor, Divyansh 08 April 2020 (has links)
Thermal bridging can be defined as the phenomenon where a structural element spanning the building envelope acts like a thermal pathway which collects and moves energy (heat) from the interior to the exterior of the structure. CFS construction, due to the high thermal conductivity of steel with respect to its surrounding structural components and repetitive nature of framing, is highly prone to thermal bridging. Thermal bridging significantly alters the thermal performance of wall assemblies.
Hence, the objective of this research project was to quantify the magnitude of energy loss through cold-formed steel (CFS) stud wall assemblies at a component level to lay the groundwork for future works that promote sustainable, energy-efficient, and improved building design recommendations.
Therefore, a parametric evaluation was performed using ISO 10211:2007, Annex A, conforming heat transfer software Blocon Heat3 version 8 to generate the data required for analysis. 80 unique wall assemblies and the impact of selected parameters on the overall thermal transmittance of the wall assembly were studied as part of the parametric evaluation. The key variables of the study are steel thickness, stud depth, stud spacing, cavity insulation R-value, external insulation thickness (R-value), and fastener diameter and length.
Based on the results of the analysis, effects of increasing stud and track thickness, depth, and stud spacing have been discussed in the form of trends in overall heat flow and linear thermal transmittance coefficient values. Additionaly, effects of increasing external insulation have been discussed by addressing changes in heat flow.
|
3 |
Reducing Thermal Bridging and Understanding Second-Order Effects in Concrete Sandwich Wall PanelsSorensen, Taylor J. 01 December 2019 (has links)
Structural engineers have traditionally detailed structures with structural and fabrication efficiency in mind, but often based on a limited understanding of thermal efficiency. Some connection designs can create significant thermal bridging, leading to unnecessary heat transfer and even premature degradation through condensation. Thermal bridging occurs when heat transfer is given a path through a more conductive material like concrete or steel rather than insulation. Concrete sandwich wall panels (SWP) tend to be highly efficient at preventing heat transfer in the middle of panels, with greatest heat transfer occurring at connections. This project identified thermally efficient details for future SWP construction to reduce heat transfer, lessen environmental impact, and increase sustainability of SWP structures. It can be particularly difficult to avoid thermal bridging at corbel connections, so 12 corbel specimens were created and tested to provide alternative corbel design options for engineers. Nine details were successfully created and are presented. Corbel specimens were modeled using the Beam-Spring Method with good agreement. After validating the Beam-Spring Model, a parametric study investigated effectiveness of the PCI Second Order Analysis and the effect of length, panel stiffness, and wythe configuration on SWP behavior under axial and flexural loads.
|
Page generated in 0.0796 seconds