• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated comparative protein modelling

May, Alexander Conrad William January 1996 (has links)
No description available.
2

Innovative screening conditions for the crystallization of macromolecules : application to solve protein structures by X-ray diffraction / Nouvelles conditions de criblage pour la cristallisation de macromolécules : applications à l'étude structurale des protéines par diffraction aux rayons X

Gorrec, Fabrice 10 March 2015 (has links)
La cristallographie aux rayons X permet la détermination des structures tridimensionnelles de macromolécules biologiques ainsi que de leurs complexes à haute résolution. Cependant, la cristallisation des protéines est un phénomène totalement aléatoire et peu de cristaux sont généralement produits, de plus leur qualité et résistance sont souvent insuffisantes. Ces travaux visent à présenter les différentes étapes pour résoudre des structures de protéines ainsi que deux développements innovants pour formuler des solutions de criblage pour la cristallisation (appelés Pi et MORPHEUS). / X-ray crystallography enables the structure determination of biological macromolecules, their complexes and assemblies to high-resolution. Nevertheless, protein crystallisation is a stochastic process and the yield of crystals is typically very poor. In addition, crystal properties are often deceiving. Herein, we introduce the basic principles of protein structure determination process and we will discuss two innovative developments of screen formulation (called Pi and MORPHEUS).
3

AGAROSE-COLLAGEN HYDROGEL COMPOSITIONS IMPACT MATRIX MECHANICS AND EXTRACELLULAR DEPOSITION

Clarisse Marie Zigan (16642191) 27 July 2023 (has links)
<p>To elucidate the mechanisms of cellular mechanotransduction, it is necessary to employ biomaterials that effectively merge biofunctionality with appropriate mechanical characteristics. Agarose is a standard biopolymer used in cartilage mechanobiology but lacks necessary adhesion motifs for cell-matrix interactions to complete mechanostransduction studies. Collagen type I is a natural biomaterial used in cartilage mechanotransduction studies but creates an environment much softer than native cartilage tissue.  In these studies, agarose was blended at two final concentrations (2% w/v and 4% w/v) with collagen type I (2 mg/mL). The overarching goal was to determine whether a composite hydrogel of agarose and collagen can create a mechanically and biologically suitable matrix for chondrocyte studies. First, hydrogels were characterized by rheologic and compressive properties, contraction, and structural homogeneity. Following baseline characterization, primary murine chondrocytes were embedded (1 × 106 cells/mL) within the hydrogels to assess the longer-term <em>in vitro</em> impact on matrix mechanics, cell proliferation, sulfated glycosaminoglycan (sGAG) content, and cellular morphology. To begin probing questions about physiologic loading conditions that chondrocytes experience <em>in</em> <em>vivo</em>, a custom compression loading system was validated using cell-laden hydrogels. Briefly, the 4% agarose – 2 mg/mL collagen I hydrogel composites were able to retain chondrocyte morphology over 21 days in culture, resulted in continual sGAG production, and had bulk mechanics similar to that of the stiffest hydrogel material tested, indicating this hydrogel class may be promising towards developing an effective hydrogel for chondrocyte mechanotransduction and mechanobiology studies, a critical step towards a fuller understanding of cell-matrix interactions. </p>

Page generated in 0.0702 seconds