• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Photochemistry of Phenyl Subtituted-1,2,4-Thiadiazoles; 15N-Labeling Studies

Changtong, Chuchawin 05 May 2005 (has links)
Photochemistry studies of phenyl substituted-1,2,4-thiadiazoles have revealed that 5-phenyl-1,2,4-thiadiazoles 31, 90, 98, 54 and 47 undergo a variety of photochemical reactions including photofragmentation, phototransposition, and photo-ring expansion while irradiation of 3-phenyl-1,2,4-thiadiazoles 46, 105 and 106 leads mainly to the formation of photofragmentation products. The formation of the phototransposition products has been suggested to arise from a mechanism involving electrocyclic ring closure and sigmatropic sulfur migration via a bicyclic intermediate: phenyl-1,3-diaza-5-thiabicyclo[2.1.0]pentene (BC). 15N-Labeling experiments confirm that sulfur undergoes sigmatropic shifts around all four sides of the diazetine ring. Thus, irradiation of 31-4-15N or 54-4-15N leads to the formation of 31-2-15N or 54-2-15N and to an equimolar mixture of 46-2-15N and 46-4-15N or 57-2-15N and 57-4-15N. Work in this laboratory on 15N-labeling of 46-2-15N also shows that 46 does not undergo electrocyclic ring closure but reacts exclusively by photofragmentation of the thiadiazole ring. 15N-Scrambling in the photofragmentation products observed after irradiation of 31-4-15N or 54-4-15N is greater than 15N-scrambling in the starting thiadiazoles suggesting that these products cannot arise only from direct fragmentation of the thiadiazole rings. An additional pathway for the formation of these products is required. The formation of phenyltriazines, the photo-ring expansion products 39 and 40 or 65 and 66 from photolysis of 31 or 54 is proposed to arise via phenyldiazacyclobutadienes (CB), generated from elimination of atomic sulfur from the bicyclic intermediates. It is suggested that phenyldiazacyclobutadienes then undergo [4+2] cycloaddition self-coupling resulting in the formation of unstable tricyclic intermediates which finally cleave to give phenyltriazines and nitriles. The observed 15N distribution in the phenyltriazine photoproducts formed after photolysis of 31-4-15N or 54-4-15N and the formation triazine 72 after irradiation of a mixture of 31+54 are consistent with this mechanism. The formation of nitriles by this pathway would account for the additional 15N-scrambling in the photofragmentation products. The photochemically generated phenyl-1,3-diaza-5-thiabicyclo[2.1.0]pentenes are the key intermediates in this suggested mechanism. In the presence of furan, these intermediates are expected to be trapped as Diels-Alder adducts. Irradiation of phenylthiadiazoles 31, 54 and 47 in furan solvent lead to increased consumption of these thiadiazoles, to quenching of the known photoproducts, and to the formation of new products suggested to result from furan trapping of the thiadiazoles followed by elimination of sulfur. Irradiation of 46 in furan solvent leads only to the formation of the photofragmentation product; no furan trapping adduct is observed. This result is consistent with the 15N-labeling experiment indicating that 46 does not undergo electrocyclic ring closure after irradiation. The photoreactivity of these phenylthiadiazoles in acetonitrile is substantially decreased when the phenyl ring at position 4 is substituted with an electron donating or withdrawing group. However, they are more photoreactive in cyclohexane solvent than in acetonitrile. The fluorescence emission spectra of these (4¢-substituted)phenyl-1,2,4-thiadiazoles exhibit moderate - large Stokes' shifts in acetonitrile. The magnitudes of these Stokes' shifts decrease in cyclohexane. This suggests a charge transfer character associated with the excited states of these thiadiazoles. In acetonitrile, these charge transfer excited states would be stabilized and become the lowest energy excited state. These charge transfer excited states would not be photoreactive and, thus, fluorescence emission becomes an effective deactivation process. In cyclohexane solvent, the charge transfer excited states would be less stabilized and, thus, the relaxed S1 would, then, become the lowest excited state. The relaxed S1 would be the state from which the observed photoproducts originate and the observed fluorescence with the smaller Stokes' shifts compared with the Stokes' shifts observed in acetonitrile.
2

Asymmetric [2,3]-Sigmatropic Rearrangement of Allylic Ammonium Ylides

Blid, Jan January 2005 (has links)
The thesis describes the realization of an asymmetric [2,3]-sigmatropic rearrangement of achiral allylic amines. It is divided into two parts; the first part deals with the development of a Lewis acid-mediated [2,3]-sigmatropic rearrangement and the second the asymmetric version thereof. Quaternization of an -amino amide with various Lewis acids established BBr3 and BF3 to be the most appropriate ones. Various allylic amines were subsequently rearranged into the corresponding homoallylic amines in good to excellent syn-diastereoselectivities, revealing the endo-transition state to be the preferred pathway. The structures of the intermediate Lewis acid-amine complexes were confirmed by NMR spectroscopy studies and DFT calculations. Based on this investigation a chiral diazaborolidine was chosen as Lewis acid and was shown to efficiently promote the asymmetric [2,3]-sigmatropic rearrangement furnishing homoallylic amines in good yields and excellent enantiomeric excesses. In contrast to the achiral rearrangement mediated by BBr3 and BF3, the asymmetric version gave the opposite major diastereomer, revealing a preference for the exo-transition state in the asymmetric rearrangement. To account for the observed selectivities, a kinetic and thermodynamic pathway was presented. On the basis of a deuterium exchange experiment on a rearranged Lewis acid-amine complex and an NMR spectroscopic investigation, the kinetic pathway was shown to be favored. / QC 20100927
3

Generation and Succeeding Reactions of Allenyl Isothiocyanates

Jawabrah Al-Hourani, Baker Salim Yacoub 06 October 2005 (has links) (PDF)
In this work, the [3,3] sigmatropic rearrangement of different substituted propargyl thiocyanates and double [3,3] sigmatropic rearrangement of enynyl isothiocyanates either by flash vacuum pyrolysis or by thermolysis in solution are studied. Additionally, the intramolecular reactions of the resulting allenyl isothiocyanates are studied, and the reaction mechanisms for the generation of the final products, such as [1,5] sigmatropic migrations or electrocyclic ring closures, are explained. These highly reactive allenyl isothiocyanates are used as appropriate electrophilic precursors for the preparation of novel examples of thiazoles substituted at C-2 position using different types of nucleophiles. For the formation of these substituted thiazoles, the necessary nucleophilicity as well as the regioselectivity, the stereoselectivity, and the reaction mechanisms are investigated. / In der vorliegenden Arbeit sind die [3,3]-sigmatrope Umlagerung von verschiedenen Propargylthiocyanaten und die doppelte [3,3]-sigmatrope Umlagerung von Eninylisothiocyanaten entweder durch Blitzvakuumthermolyse oder Thermolyse in Lösung untersucht worden. Zusätzlich wurden die intramolekularen Reaktionen der resultierten Allenylisothiocyanate studiert. Außerdem sind die Reaktionsmechanismen zur Bildung der Thermolyseprodukte wie z.B. die [1,5]-sigmatropen Umlagerungen und die elektrocyclischen Ringschlüsse erklärt. Die hochreaktiven Allenylisothiocyanate sind als geeignet elektrophile Vorläufer zur Synthese von neuen Thiazolen verwendbar, die an der C-2 Position substituiert sind. Dabei kommen verschiedene Nucleophile zum Ansatz. Für die Bildung dieser substituierten Thiazole sind die Regioselektivität, Stereoselektivität, Reaktionsmechanismen und der Bereich der einsetzbaren Nucleophile untersucht worden.

Page generated in 0.03 seconds