• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Responses of linseed to vesicular-arbuscular mycorrhizae, phosphorus and zinc in a vertisol

Seymour, Nicola Pamela Unknown Date (has links)
No description available.
2

Response of uncut and multicut forage sorghum to nitrogen fertilizer under different environmental conditions and water availability

Rahman, M. Unknown Date (has links)
No description available.
3

Investigations on growth and P uptake characteristics of maize and sweet corn as influenced by soil P status : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph. D.) (Plant & soil science), Institute of Natural Resources, Massey University, Palmerston North, New Zealand

Aslam, Tehseen January 2005 (has links)
Despite being different cultivars of the same plant species (Zea mays L.), maize and sweet corn have contrasting P fertiliser recommendations in New Zealand, that are reflected in different target Olsen P values of 10-15 mg P/kg soil for optimum maize growth and 26-35 mg P/kg soil for optimum sweet corn growth. Three key hypotheses were developed in this study to explain why these differences may exist: i) maize and sweet corn differ in their responsiveness to P fertiliser i.e. maize is more internally P efficient and requires less P than sweet corn to grow, ii) both cultivars differ in external P efficiency i.e. their ability to take P up from soil iii) both cultivars differ in external P efficiency because they have different root system structure. Two field experiments evaluated the growth and yield responses of maize and sweet to different rates of P fertiliser application. The first experiment was conducted in Hawke's Bay (2001-02) and second in the Manawatu (2002-03) with P application rates of 0, 100 and 200 kg P/ha in the Hawke's Bay and 0, 15 and 70 kg P/ha in the Manawatu. Both experiments were conducted on soils of low available P status. The Olsen P test values of 13 mg P/kg soil in the Hawke's Bay and 11 mg P/kg soil in the Manawatu were far below the recommended values for sweet corn (25-35 mg P/kg soil). In both experiments and across all P treatments maize produced significantly higher dry matter yields than sweet corn during all sampling stages. In the Hawke's Bay experiment at 100 days after sowing (DAS), the maize (87719 plants/ha, 20.9 t/ha) produced 43% more dry matter than sweet corn (71124 plants/ha, 14.6 t/ha), whereas, in the Manawatu experiment (140 DAS), maize (71124 plants/ha, 15.2 t/ha) had a 39% higher dry matter yield than sweet corn (71124 plants/ha, 10.9 t/ha). In both the field experiments, the sweet corn fresh cob yield of 27 and 28 t/ha in the Hawke's Bay and the Manawatu regions and maize grain yields of 16 and 10 t/ha, respectively, were within the range of the reported commercial yields for each region. In both experiments, the P fertiliser application raised the soil P status (Olsen P test values) but caused no significant increases in either maize or sweet corn yields (total dry matter, sweet corn fresh cob or maize grain). Commercially viable yields of both cultivars were able to be achieved without P fertiliser application with Olsen P soil test in the range of 10-15 mg P/kg soil. Sweet corn reached harvestable maturity at 115 DAS in the Hawke's Bay and 140 DAS in the Manawatu experiments. By this time maize had produced 4-6 t/ha more total dry matter yield than sweet corn, yet maize and sweet corn had achieved similar total P uptake (32-37 kg P/ha at 100 DAS in the Hawke's Bay and 18-19 kg P/ha at 140 DAS in the Manawatu). At silking (after 75 DAS in the Hawke's Bay and approximately 110 DAS in the Manawatu), both cultivar's total leaf P concentrations (0.21-0.25%) were within the sufficiency range values for maize crops in New Zealand (0.18-0.33 %). Maize, however was more internally P efficient growing more dry matter per unit P taken up, which was more noticeable in the drier season. Fertiliser P application increased P uptake with both cultivars under moist conditions in the Hawke's Bay experiment (2001-02). However, the dry conditions in the Manawatu (2002-03) limited P uptake as well as restricted dry matter yields with both cultivars. Further, there were no significant differences between maize and sweet corn P uptake efficiency (kg P/kg root) despite significant differences in the root system structure (biomass) for both cultivars at all stages, which lead to different temporal patterns of P uptake. The lack of maize yield response to fertiliser P in both field experiments is consistent with the New Zealand recommendations for growing a maize grain crop (because soil Olsen P was in the range of 10-15 mg P/kg). However, the lack of sweet corn yield response in both field experiments does not support the New Zealand recommendations for growing sweet corn (which assume optimal Olsen P values are 26-35 mg P/kg).
4

Nutrition and irrigation studies with processing tomato (Lycopersicon esculentum Mill.) : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University, Palmerston North, New Zealand

Johnstone, Paul R. January 2005 (has links)
Content removed due to copyright restriction: Appendix IV. Managing fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato production (HortScience 40: 1 857-1861 ). / Improved fertilizer and irrigation management has become increasingly important for tomatoes (Lycopersicon esculentum Mill.) grown for processing. To reduce potential nutrient loss to the environment due to excessive supply, fertilizer recommendations should reflect plant demand determined in an optimal root environment. An aeroponics experiment examined the effect of low and high nutrient supply during vegetative growth, fruit development and fruit ripening. The use of aeroponics in a glasshouse environment allowed control of fertility directly at the root surface. A further experiment applying aeroponics results was established in the field using drip-fertigation. Both studies were conducted at Massey University, Palmerston North. Across experiments, fruit yield was largely determined by vegetative growth in the 6-8 weeks after transplanting; high fruit yields (> 90 Mg ha-1) were associated with improved vegetative growth, and in particular larger leaf area. Mild N deficiency was the principal cause of poor vegetative growth in low nutrient supply treatments. Higher yield resulted from greater fruit number. Reinstating adequate fertility after vegetative growth stopped and fruit number was determined did not increase fruit yield. For maximum fruit yield, plant uptake of N and K was 9.4 and 13.8 g plant-1, respectively (equivalent to approximately 210 and 310 kg ha-1 at a medium planting density). Greatest nutrient uptake occurred during fruit development. Where practical, fertilizer application should be concentrated during fruit growth. Heavy late-season K fertigation did not increase the soluble solids concentration (SSC) of fruit. Although offering considerable flexibility in nutrient fertigation, the use of drip irrigation often results in undesirably low SSC. Late-season irrigation management strategies to increase fruit SSC without excessive yield loss were subsequently investigated in drip-irrigated fields. Two experiments were conducted at the University of California, Davis. Irrigation cutoff prior to fruit ripening reduced fruit set, decreased fruit size, and increased the incidence of fruit rots, making this approach uneconomical. Irrigation cutback to 25-50% of reference evapotranspiration imposed at the onset of fruit ripening (approximately 6 weeks preharvest) was sufficient to improve fruit SSC and maintain Brix yields (Mg Brix solids ha-1) compared to the current grower practice (late cutoff). Irrigation cutbacks imposed during ripening did not cause excessive canopy dieback, nor were fruit culls or rots increased when the crop was harvested at commercial maturity. Fruit colour and pH were not adversely affected by irrigation cutback. Brix monitoring of the earliest ripening fruit (when 30-60 % of the fruit surface shows a colour other than green) can help classify fields as to the severity of irrigation cutback required to reach desirable fruit SSC at harvest. Combined, these techniques offer considerable flexibility in managing fields for improved fruit SSC levels.
5

Sulphur nutrition of the grass component on a tussock grassland soil

Vartha, E. W. January 1960 (has links)
The study undertaken was carried out in the montane tussock grassland region which in the South Island comprises some six million acres. Field trials were established at Mt Somers, Mid Canterbury. This study attempts to elucidate some of the factors connected with the sulphur nutrition of grasses. For the particular trial area it was hoped to determine four key aspects ; 1. Whether the response of the grass to nitrogen is governed by the sulphur level available. 2. A determination of what level of nitrogen was likely to be provided by clover fixation and transferred to the grass component under improved grassland conditions in the area. 3. What the optimum level of sulphur for the association is, allowing adequate sulphur for maximum possible nitrogen fixation as well as for utilization by the grass of the nitrogen transferred. 4. The effects of nitrogen and sulphur on plant chemical composition and any possible relationships between plant and soil as infuenced by these factors. Following a review of literature, a summary of experimental work is presented, with results, discussion and conclusions.

Page generated in 0.0789 seconds