• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 11
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 28
  • 13
  • 12
  • 12
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chlorophosphazenes: Formation, Propagation, and Quantum Mechanical Calculations

Salmon, Carrie R. 27 April 2021 (has links)
No description available.
2

New heterodonor phosphine and bipyridine ligands

Laitinen, R. (Riitta) 16 April 1999 (has links)
Abstract Twenty-seven phosphine and six bipyridine ligands were synthesised and characterized. Additionally, a new route to the family of phosphine ligands via o-thioanisyldichlorophosphine was found. The phosphine ligands contain thiomethylphenyl, methoxyphenyl, dimethylaminophenyl, pyridyl, naphthyl and anthracenyl groups, and the bipyridine ligands thiomorpholine and piperidine groups. Metal complexes of 3-pyridyldiphenylphosphine, 6,6'-bis(methylthiomorpholine)-2,2'-bipyridine and 4,4'-dimethyl-6,6'-bis(methylthiomorpholine)-2,2'-bipyridine were prepared. Ligands and complexes were characterized by 1H-, 13C-, 31P- and two-dimensional HSQC-NMR spectroscopy, and crystal structures were determined for the ligands and two of the metal complexes. Tertiary phosphine ligands were prepared for catalytic purposes and tested in hydroformylation reaction at the Helsinki University of Technology and the University of Joensuu. Bipyridine ligands were designed for bimetallic coordination. The phosphine ligands cover a wide range of electronic and steric properties. The spectroscopic parameters and crystal structures were studied with the purpose of charting trends in the basicities and steric effects of the ligands.
3

MR spektroskopie pacientů s diabetem mellitus / MR spectroscopy in patients with diabetes mellitus

Šedivý, Petr January 2013 (has links)
This thesis deals with in vivo MR spectroscopy. Measurements in this thesis were performed on whole-body MR tomograph at the Institute for Clinical and Experimental Medicine in Prague. The objective of the thesis was to study differences in the biochemical processes and energy metabolism in the muscle tissue under physical workload between the groups of healthy subjects and patients with type 1 diabetes mellitus (DM1). We used phosphorous spectroscopy in combination with ergometer. The thesis is divided into five chapters. The first chapter describes theoretical introduction to in vivo 1 H and 31 P MR spectroscopy and muscle metabolism, the second chapter deals with the description of the experimental equipment and measurement, results of the thesis are reported in the third chapter and the fourth chapter is a discussion of results. Main result of this work is summarized in conclusion; we found differences between the metabolism of patients with DM1 and healthy volunteers.
4

Understanding Chemical Sequential Extraction Method by Using Nuclear Magnetic Resonance and X–Ray Absorption Near Edge Spectroscopies for Phosphorus Fractionation of Lake Sediments

2015 October 1900 (has links)
Phosphorus release from sediments contributes significantly to high phosphorus level in lake water and provides nutrient support to promote algal growth. To speed up the recovery of eutrophic lakes, it is necessary to limit phosphorus release from sediments. Accurate sedimentary phosphorus fractionation is a strong basis for understanding phosphorus release from sediments. There are several techniques to study sedimentary phosphorus fractionation. Chemical sequential extraction (CSE) techniques are commonly used by industrial practitioners. However, it is doubtful that the P fractionation of the lake sediments studied using the Jensen and Thamdrup (1993) method is reliable. The reason is that the phosphorus fractions do not exactly correspond to the chemically defined compounds in the sequential phosphorus extraction. In order to further understand the Jensen and Thamdrup (1993) method, it is necessary to study P species in the supernatant and residue of each fraction. X-ray absorption near-edge structure (XANES) can provide direct information about the mineral phase of phosphorus in the sediments. Solution phosphorus nuclear magnetic resonance (31P NMR) reveals direct molecular and structural characterization of organic phosphorus in the sediments. This study enhanced the understanding of the Jensen and Thamdrup (1993) chemical sequential extraction method for studying the sedimentary phosphorus fractionation by using solution 31P NMR spectroscopy and phosphorus K-edge XANES spectroscopy. The research using the chemical sequential extraction indicated that inorganic P was dominant in all sediments samples. Also, it suggested that calcium-bound P accounted for the largest proportion of the total P in every sediments sample. The solution 31P NMR spectroscopy clearly identified orthophosphate, phytic acid, pyrophosphate, and polyphosphate in the sediments samples. The P K-edge XANES spectroscopy showed all of the sediments samples contained apatite and phytic acid. In addition, the study using the XANES identified apatite in the residue after the HCl extraction of Blackstrap #6; however it indicated no apatite in the supernatant of HCl fraction of both Blackstrap #3 and Pond #11.
5

Human cardiac magnetic resonance spectroscopy

Clarke, William January 2016 (has links)
The status of the myocardial 'high energy phosphate' metabolism is a sensitive marker of the occurrence and progression of heart failure. Magnetic resonance spectroscopy enables non-invasive, direct and potentially quantitative measurements of the phosphate containing metabolites present in the human myocardium. This thesis is primarily concerned with the creation of measurement techniques for cardiac phosphorus magnetic resonance spectroscopy (<sup>31</sup>P-MRS) at the 7 tesla field strength. Chapter 1 provides an overview of the physical basis of magnetic resonance spectroscopy, the myocardial high energy phosphate metabolism, and the clinical relevance of the technique. Chapter 2 describes the advantage of 7 tesla scanners over lower field strengths. The radio frequency coil hardware is characterised experimentally. The multivoxel spectroscopy methods used throughout the thesis are described. Chapter 3 details the implementation of an open source spectroscopy fitting program. It is validated against previous closed-source implementations. The program's use is demonstrated in several clinical studies of heart failure, and to improve a previously implemented <sup>1</sup>H spectroscopy coil combination method. In Chapter 4 the measurement of inorganic phosphate in the presence of overlapping peaks is attempted. Suppression of overlapping peaks, originating from the blood, is tried using B<sub>o</sub> gradients, then saturation transfer. The myocardial pH of hypertrophic cardiomyopathy patients is measured. Chapter 5 describes the effect of creatine kinase catalysed chemical exchange on the <sup>31</sup>P-MRS spectrum. A survey of methods suitable for measuring creatine kinase kinetics at 7 tesla is made. Multi-parametric fitting of variable repetition time saturation transfer data is explored in simulation and experiment. Chapter 6 describes the re-implementation and extension, for dynamic measurements, of the triple repetition time saturation transfer method for two clinical studies at 3 tesla. The creatine kinase forward rate constant is measured in heart failure and healthy cohorts, at rest, and during cardiac stress. In Chapter 7 a Bloch-Siegert B<sub>1</sub> mapping sequence is implemented for <sup>31</sup>P-MRS. An optimal Bloch-Siegert method for X-nuclear spectroscopy is calculated. B<sub>1</sub>maps are validated in skeletal muscle and collected in 5 volunteer's hearts. Chapter 8 uses the Bloch-Siegert B<sub>1</sub> mapping sequence and the four angle saturation transfer method to implement creatine kinase rate measurement at 7 tesla. The first 3D localised creatine kinase rate measurements in the human myocardium are achieved in 10 volunteers.
6

Methods and Potentials of Kraft Lignin Esterification / Metoder och Potential för Esterifiering av Kraftlignin

Xu, Taoran January 2023 (has links)
Lignin, en av huvudkomponenterna i lignocellulosabiomassa, utgör en stor mängd av sidoströmen från massaindustrin. Lignin är aromatiska makromolekyler som förekommer i rikliga mängder i naturen och uppvisar unika antioxidant-, uv-skyddande, anti-ultravioletta, antikorrosiva och antimikrobiella egenskaper, etc. Ligninbaserade produkter är ännu inte kommersialiserade eftersom de är begränsade av den kemiska heterogeniteten hos lignin som separerats från olika råvaror och producerats i olika industriella processer. Istället förbränns lignin vanligtvis för värme- och elproduktion efter extraktion. Tillvägagångssätt för att bevara värdefulla egenskaper hos lignin och samtidigt övervinna begränsningar har blivit heta ämnen. I detta projekt genomfördes kemiska modifieringar av kraftlignin från olika naturliga råvaror, gran och eukalyptus, där fenolgrupperna ersattes av alkylgrupper med olika kedjelängder (kolnummer 1, 6 och 12). De kemiska strukturerna och de termiska egenskaperna hos kraftlignin studerades med en kombination av analytiska metoder. Egenskaperna hos två typer av tekniska kraftligniner och dess derivat undersöktes även för jämförelse. Resultaten visade att kemiskt modifierat lignin kan vara ett lovande råmaterial för förädlade produkter som till exempel ligninbaserade nanopartiklar. / Lignin, one of the major components in lignocellulose biomass, makes up a large amount of sidestream from the pulp industry. As an abundant feedstock of bio- originated aromatic macromolecules, lignin shows unique antioxidant, UV-protective, anticorrosive, and antimicrobial properties, etc. However, limited by the chemical heterogeneity of lignin separated from different bioresources and industrial procedures as well as its recalcitrance as macromolecules, lignin-based products are not yet commercialized, while lignin is commonly burnt for heat or power generation after extraction. Approaches of preserving valuable properties of lignin meanwhile overcoming limitations have become heated topics. In this project, chemical modifications of kraft lignin from different natural bio-origins, spruce and eucalyptus, were conducted, with alkyl groups of various chain lengths (carbon numbers 1, 6 and 12) substituting the phenolic groups. A combination of analytical methods for characterizing the chemical structures and thermal properties of kraft lignin and chemically modified kraft lignin were studied. Meanwhile, the characteristics of two kinds of technical kraft lignin and their derivatives were investigated for comparison. Results highlighted that chemically modified lignin could be a promising material to serve as a feedstock for value-added products such as lignin-based nanoparticles.
7

Investigations of the Mechanism for Activation of Bacillus Thuringiensis Phosphatidylinositol-specific Phospholipase C

Pu, Mingming January 2009 (has links)
Thesis advisor: Mary F. Roberts / Thesis advisor: Steven D. Bruner / The bacterial phosphatidylinositol-specific phospholipase C (PI-PLC) from <italic>Bacillus thuringiensis</italic> is specifically activated by low concentrations of a non-substrate lipid, phosphatidylcholine (PC), presented as an interface. However, if the PC concentration in the interface is too high relative to substrate, the enzyme exhibits surface dilution inhibition. Understanding this bacterial enzyme, which shares many kinetic features with the larger and more complex mammalian PI-PLC enzymes, requires elucidating the mechanism for PC activation and inhibition. Various techniques were applied to study the interaction of the protein with vesicles composed of both the activator lipid PC and the substrate lipid (or a nonhydrolyzable analogue). Fluorescence correlation spectroscopy (FCS), used to monitor bulk partitioning of the enzyme on vesicles, revealed that both the PC and the substrate analogue are required for the tightest binding of the PI-PLC to vesicles. Furthermore, the tightest binding occurred at low mole fractions of substrate-like phospholipids. Field cycling <super>31</super>P NMR (fc-P-NMR) spin-lattice relaxation studies provided information on how bound protein affects the lipid dynamics in mixed substrate analogue/PC vesicles. The combination of the two techniques could explain the enzyme kinetic profile for the PC activation and surface dilution inhibition: small amounts of PC in an interface enhanced PI-PLC binding to substrate-rich vesicles while high fractions of PC tended to sequester the enzyme from the bulk of its substrate leading to reduced specific activity. FCS binding profiles of mutant proteins were particularly useful in determining if a specific mutation affected a single or both phospholipid binding modes. In addition, an allosteric PC binding site was identified by fc-P-NMR and site directed spin labeling. A proposed model for PC activation suggested surface-induced dimerization of the protein. Experiments in support of the model used cysteine mutations to create covalent dimers of this PI-PLC. Two of these disulfide linked dimers, formed from W242C or S250C, exhibited higher specific activities and tighter binding to PC surfaces. In addition, single molecule total internal reflection fluorescence microscopy was used to monitor the off-rate of PI-PLC from surface tethered vesicles, providing us with a direct measure of off-rates of the protein from different composition vesicles. / Thesis (PhD) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
8

Absolute quantification of human in vivo hepatic 31P magnetic resonance spectroscopy at 7 tesla

Purvis, Lucian A. B. January 2018 (has links)
Phosphorus (<sup>31</sup>P) metabolites are emerging liver disease biomarkers. This work aims to develop a quantification protocol for human hepatic <sup>31</sup>P magnetic resonance spectroscopy (MRS) at 7 tesla (T). It should have high SNR, deliver robust measurements of metabolite concentrations with high reproducibility, and be feasible to use in clinical studies. This will allow detailed characterization of liver metabolism in diseases such as cirrhosis, increasing the utility of <sup>31</sup>P-MRS as a clinical tool. A 3D chemical shift imaging method using a 16 channel <sup>31</sup>P array at 7 T is chosen to give high SNR <sup>31</sup>P spectra from the human liver in vivo, while also providing good spatial localization and spectral resolution. The Oxford Spectroscopy Analysis (OXSA) toolbox, our MATLAB-based processing software package, is introduced and adaptations for analysis of liver spectra are described. Five volunteers were scanned to determine T<sub>1</sub>s for the ten visible <sup>31</sup>P metabolites. Simulations were used to determine design criteria for calibration phantoms at 1.5, 3 and 7 T. I compare three candidate approaches to give "absolute" concentrations in mmol/L wet tissue using a 10 cm loop coil, and then extend these approaches to data acquired using the 16 element receive array. The final protocol was applied to data acquired in ten healthy volunteers and eleven patients with cirrhosis to determine reproducibility and the differences between healthy and diseased livers. This protocol allows distinction between healthy and cirrhotic livers with 90% specificity and sensitivity, using cut-offs in either Î3-adenosine triphosphate or inorganic phosphate concentrations. This <sup>31</sup>P-MRS absolute quantification protocol is an important first step in fully utilising the increased SNR afforded by the 7 T scanner, offering valuable insight into liver metabolism, and paving the way for other novel <sup>31</sup>P-MRS methods to be developed in the liver at 7 T.
9

Etude de l'endoribonucléase de restriction RegB.

Saïda, Fakhri 29 October 2003 (has links) (PDF)
L'endoribonucléase de restriction RegB est une enzyme produite par le bactériophage T4. Elle est impliquée dans la transition phase précoce-phase moyenne durant le cycle lytique du virus. RegB coupe avec une spécificité quasi absolue la séquence GGAG impliquée notamment dans l'initiation de la traduction chez la bactérie Escherichia coli. Nous avons caractérisé dans cette thèse de façon précise la toxicité de RegB dans la bactérie et nous avons proposé des outils pour contourner cette toxicité tels la manipulation du nombre de copies du vecteur d'expression ou l'atténuation de l'efficacité du site d'initiation de la traduction. Nous avons, par ailleurs, proposé une application de RegB pour la construction d'un vecteur de clonage à sélection positive et à expression duale dans les systèmes procaryotes et eucaryotes. L'étude par RMN du 31P de la cinétique de clivage d'un ARN par RegB a permis de définir RegB comme une "transphosphorylase libérant un phosphodiester 2', 3'-cyclique". Des études de mutagenèses dirigées et aléatoires combinées à l'évolution du gène regB dans un virus apparenté au phage T4 (le virus RB49) ont mis en évidence le rôle des résidus Glutamate 19, Histidine 48, Arginine 52 et Histidine 68 dans l'activité de RegB. Le mutant RegB H48A a été choisi pour construire un modèle structural du site actif de RegB. L'attribution séquentielle de cette protéine par RMN hétéronucléaire 1H/15N/13C a été entreprise avec succès.
10

Magnetic resonance characterization of hepatocellular carcinoma in the woodchuck model of chronic viral hepatitis

McKenzie, Eilean J 25 February 2009 (has links)
Woodchucks are the preferred animal model to study chronic viral hepatitis and the development of hepatocellular carcinoma (HCC), which occurs as a result of infection with woodchuck hepatitis virus. Significant elevations in the phosphomonoester peak in 31P-MRS spectrum correlated to the presence of HCC. Ex vivo 31P-NMR determined that HCC tissue had significantly elevated concentrations of PC compared to uninfected control tissues, confirming that PME is specific to the tumour’s growth. Finally, a recombinant vaccinia virus was constructed to stimulate the immune systems of infected woodchucks against cells expressing core antigens. Despite reductions in surface antigen expression and viral load, elevations in serum GGT and the PME in 31P-MRS indicated that there was tumour growth in treated woodchucks. In conclusion, the PME peak represents a potential biomarker of cancerous growth when used in conjunction with serological tests to detect HCC in the liver due to chronic hepatitis virus infection. / May 2009

Page generated in 0.0174 seconds