• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

AAV-vector mediated gene delivery for Huntington's Disease: an investigative therapeutic study

Kells, Adrian P January 2007 (has links)
Progressive degeneration in the central nervous system (CNS) of Huntington’s disease (HD) patients is a relentless debilitating process, resulting from the inheritance of a single gene mutation. With limited knowledge of the underlying pathological molecular mechanisms, pharmaceutical intervention has to-date not provided any effective clinical treatment strategies to attenuate or compensate the neuronal cell death. Attention has therefore turned to biotherapeutic molecules and novel treatment approaches to promote restoration and protection of selectively vulnerable populations of neurons in the HD brain. Rapid advances in vectorology and gene-based medicine over the past decade have opened the way for safe and efficient delivery of biotherapeutics to the CNS. With numerous factors known to regulate the development, plasticity and maintenance of the mammalian nervous system many proteins have emerged as potential therapeutic agents to alleviate HD progression. This investigative study utilised gene delivery vectors derived from the non-pathogenic adeno-associated virus (AAV) to direct high-level expression of brain-derived neurotrophic factor (BDNF), glial cell-line derived neurotrophic factor (GDNF), Bcl-xL or X-linked inhibitor of apoptosis protein (XIAP) within the rodent striatum. Maintenance of the basal ganglia and functional behaviour deficits were assessed following excitotoxic insult of the striatum by quinolinic acid (QA), a neurotoxic model of HD pathology. Enhanced striatal expression of BDNF prior to QA-induced lesioning provided maintenance of the striosome-matrix organisation of the striatum, attenuating impairments of sensorimotor behaviour with a 36-38% increase in the maintenance of DARPP-32 / krox-24 expressing striatal neurons, reduced striatal atrophy and increased maintenance of striatonigral projections. Higher levels of BDNF however induced seizures and weight-loss highlighting the need to provide regulatable control over biotherapeutic protein expression. Continuous high-expression of BDNF or GDNF resulted in a downregulation of intracellular signal mediating proteins including DARPP-32, with AAV-GDNF not found to enhance the overall maintenance of striatal neurons. Neither of the anti-apoptotic factors provided significant protection of transduced striatal neurons but tended towards ameliorating QA-induced behavioural deficits, displaying behaviour – pathology correlations with the survival of parvalbumin-expressing neurons in the globus pallidus. The results of this thesis suggest BDNF as a promising putative biotherapeutic for HD, but emphasises the requirement to control expression following gene delivery, and for further elucidation of the physiological impact that enhanced expression of endogenous factors has on the host cells. Additionally the maintenance of neural networks beyond the caudate-putamen will be vital to ensuring efficient clinical outcomes for HD. / Auckland Medical Research Foundation. Foundation for Research, Science and Technology. The University of Auckland.
12

Shining new light on motoneurons: characterization of motoneuron dendritic spines using light microscopy and novel analytical methods

McMorland, Angus John Cathcart January 2009 (has links)
Dendritic spines are fundamental units of information processing within the nervous system, responsible for independent modulation of synaptic input to neurons. Filopodia, often morphologically indistinguishable from spines, are involved in formation of synapses during neuronal development. Despite the importance of these structures for neuronal function, no detailed study of their presence on motoneurons has yet been made. Here, the presence of spines on hypoglossal motoneurons (HMs) is described at three developmental stages: at P0–2 and P9–11, spines are present at an average density of ~0.1 spines/micron, but at P19 spine density becomes negligible. In P0–2 and P9–11, spines are nonuniformly distributed, occuring in clusters, and at lower density in the most proximal and distal regions to the soma than at intermediate regions. HM spines coincide with a decrease in cell input resistance, which reduces excitability during development. Thus one may speculate that these spines are involved in the formation of new synapses required to maintain adequate excitatory drive. A major difficulty for the study of spines is their small size, which complicates measurement using optical methods. Here, I present a novel method for reconstructing spine morphology using geometric models based on a priori knowledge of spine structure. Tests of the technique using simulated data indicate that it has a resolving capability of up to 40 nm (limited by noise). The technique has been used to measure dendritic spines on HMs, showing that these structures have necks as small as 0.22 micron. For purely passive modulation of synaptic strength, spine necks need to be <~ 0.15 micron. These data suggest that if modulation of synaptic input occurs, biochemical and/or active electrical processes are needed. The methods developed in this Thesis, which have here been applied to HMs, are generally applicable to the study of spine morphology, and its effect on synaptic processing, in all classes of neurons.
13

Shining new light on motoneurons: characterization of motoneuron dendritic spines using light microscopy and novel analytical methods

McMorland, Angus John Cathcart January 2009 (has links)
Dendritic spines are fundamental units of information processing within the nervous system, responsible for independent modulation of synaptic input to neurons. Filopodia, often morphologically indistinguishable from spines, are involved in formation of synapses during neuronal development. Despite the importance of these structures for neuronal function, no detailed study of their presence on motoneurons has yet been made. Here, the presence of spines on hypoglossal motoneurons (HMs) is described at three developmental stages: at P0–2 and P9–11, spines are present at an average density of ~0.1 spines/micron, but at P19 spine density becomes negligible. In P0–2 and P9–11, spines are nonuniformly distributed, occuring in clusters, and at lower density in the most proximal and distal regions to the soma than at intermediate regions. HM spines coincide with a decrease in cell input resistance, which reduces excitability during development. Thus one may speculate that these spines are involved in the formation of new synapses required to maintain adequate excitatory drive. A major difficulty for the study of spines is their small size, which complicates measurement using optical methods. Here, I present a novel method for reconstructing spine morphology using geometric models based on a priori knowledge of spine structure. Tests of the technique using simulated data indicate that it has a resolving capability of up to 40 nm (limited by noise). The technique has been used to measure dendritic spines on HMs, showing that these structures have necks as small as 0.22 micron. For purely passive modulation of synaptic strength, spine necks need to be <~ 0.15 micron. These data suggest that if modulation of synaptic input occurs, biochemical and/or active electrical processes are needed. The methods developed in this Thesis, which have here been applied to HMs, are generally applicable to the study of spine morphology, and its effect on synaptic processing, in all classes of neurons.
14

Shining new light on motoneurons: characterization of motoneuron dendritic spines using light microscopy and novel analytical methods

McMorland, Angus John Cathcart January 2009 (has links)
Dendritic spines are fundamental units of information processing within the nervous system, responsible for independent modulation of synaptic input to neurons. Filopodia, often morphologically indistinguishable from spines, are involved in formation of synapses during neuronal development. Despite the importance of these structures for neuronal function, no detailed study of their presence on motoneurons has yet been made. Here, the presence of spines on hypoglossal motoneurons (HMs) is described at three developmental stages: at P0–2 and P9–11, spines are present at an average density of ~0.1 spines/micron, but at P19 spine density becomes negligible. In P0–2 and P9–11, spines are nonuniformly distributed, occuring in clusters, and at lower density in the most proximal and distal regions to the soma than at intermediate regions. HM spines coincide with a decrease in cell input resistance, which reduces excitability during development. Thus one may speculate that these spines are involved in the formation of new synapses required to maintain adequate excitatory drive. A major difficulty for the study of spines is their small size, which complicates measurement using optical methods. Here, I present a novel method for reconstructing spine morphology using geometric models based on a priori knowledge of spine structure. Tests of the technique using simulated data indicate that it has a resolving capability of up to 40 nm (limited by noise). The technique has been used to measure dendritic spines on HMs, showing that these structures have necks as small as 0.22 micron. For purely passive modulation of synaptic strength, spine necks need to be <~ 0.15 micron. These data suggest that if modulation of synaptic input occurs, biochemical and/or active electrical processes are needed. The methods developed in this Thesis, which have here been applied to HMs, are generally applicable to the study of spine morphology, and its effect on synaptic processing, in all classes of neurons.
15

Shining new light on motoneurons: characterization of motoneuron dendritic spines using light microscopy and novel analytical methods

McMorland, Angus John Cathcart January 2009 (has links)
Dendritic spines are fundamental units of information processing within the nervous system, responsible for independent modulation of synaptic input to neurons. Filopodia, often morphologically indistinguishable from spines, are involved in formation of synapses during neuronal development. Despite the importance of these structures for neuronal function, no detailed study of their presence on motoneurons has yet been made. Here, the presence of spines on hypoglossal motoneurons (HMs) is described at three developmental stages: at P0–2 and P9–11, spines are present at an average density of ~0.1 spines/micron, but at P19 spine density becomes negligible. In P0–2 and P9–11, spines are nonuniformly distributed, occuring in clusters, and at lower density in the most proximal and distal regions to the soma than at intermediate regions. HM spines coincide with a decrease in cell input resistance, which reduces excitability during development. Thus one may speculate that these spines are involved in the formation of new synapses required to maintain adequate excitatory drive. A major difficulty for the study of spines is their small size, which complicates measurement using optical methods. Here, I present a novel method for reconstructing spine morphology using geometric models based on a priori knowledge of spine structure. Tests of the technique using simulated data indicate that it has a resolving capability of up to 40 nm (limited by noise). The technique has been used to measure dendritic spines on HMs, showing that these structures have necks as small as 0.22 micron. For purely passive modulation of synaptic strength, spine necks need to be <~ 0.15 micron. These data suggest that if modulation of synaptic input occurs, biochemical and/or active electrical processes are needed. The methods developed in this Thesis, which have here been applied to HMs, are generally applicable to the study of spine morphology, and its effect on synaptic processing, in all classes of neurons.

Page generated in 0.0959 seconds