• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 132
  • 106
  • 84
  • 11
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Suitability of solar drive absorption cycle cooling for Kuwait

Al-Fahed, B. S. January 1985 (has links)
No description available.
102

Salt gradient solar ponds and desalination with particular reference to the absorbtion of solar radiation in salt solutions, and application in Saudi Arabia

Afeef, M. January 1985 (has links)
No description available.
103

A manually-repositioned concentrating photovoltaic water pump

Bentley, R. W. January 1987 (has links)
No description available.
104

A novel design of a compound parabolic concentrator with dual-cavity

Khonkar, Hussam January 1996 (has links)
No description available.
105

Sunspace systems in the UK and their energy implications

Wiltshire, Robin January 1994 (has links)
No description available.
106

The use of power electronic interface in the efficacious utilization of power in photovoltaics pumping systems

El Safi, Osman E. O. January 1990 (has links)
No description available.
107

Structural and electrical characteristics of CdS-Cu2S thin film solar cells

Hariri, Abdul Kader January 1985 (has links)
A study has been made of a variety of factors influencing the efficiency and operational stability of front-wall CdS-Cu2S solar cells. In the course of this work -1 cm2 cells were fabricated with conversion efficiency of up to 8% without attempting to reduce reflection losses.The CdS films were produced by vacuum evaporation and the electrical and structural characteristics of these films were studied as a function of the rate and temperature of the deposition. Previously there had been some controversy concerning the nature of the CdS source material required for fabricating high performance CdS-based solar cells, but this work has shown that a variety of CdS sources can be employed successfully provided that the film deposition parameters are suitably chosen.A conventional chemical exchange technique was employed to convert the CdS film surface to Cu2SI with the thickness and stoichiometry of the resultant Cu2S layer being examined by means of electrochemical analysis.Changes in the electrical properties of the CdS-Cu2S cells due to post- fabrication anealing under a variety of different conditions were studied and correlated with structural changes monitored by means of Auger electron spectroscopy with the aid of argon ion etching. Depth profiles of the constituent element concentrations indicate that, for samples annealed in air, a deep penetration of copper into the CdS layer occurs together with a significant out-diffusion of cadmium from the CdS after only a few minutes at 1000C. In contrast, the copper penetration which results from vacuum or hydrogen annealing treatment is substantially less and no significant out-diffusion of cadmium is observed for annealing temperatures up to 4000C. Two different diffusion processes, one in the grain boundaries and one in the mid-grain regions, have been identified and their relative importance has been studied for annealing cycles performed under the same three different ambient atmospheres (air, vacuum or hydrogen). The normally rapid and undesirable grain boundary diffusion of copper was found to be significantly inhibited by the use of flowing hydrogen during annealing. A further technologically important observation concerns the effect of the deposition of a film of copper over the copper sulphide layer of a cell and subsequent annealing of it in air. The improved electrical stability which this treatment yields has been shown to be directly associated with reduced interdiffusion at the CdS-Cu2S interface. This interfacial diffusion has also been shown to be influenced by the CdS stoichiometry in the vicinity of the junction.Finally, a brief investigation was made into the use of the ion implantation technique as a means of doping the upper layer of the OdS film with copper without annealing the completed cell. The results have demonstrated the feasibility of this technique, with the best results being obtained using a copper ion fluence of 5.1014 ions cm-2 at 50 keV ion energy.
108

Optical modelling and optimisation of Spheral Solar'T'M Cells

Bisconti, Raffaella January 1997 (has links)
No description available.
109

CdS-CuₓS single crystal and thin film solar cells

Al-Dhafiri, Abdullah M. January 1988 (has links)
The work presented in this thesis is concerned with photovoltaic cells formed by plating CdS single crystals and thin films, and Cd(_y) Zn(1 _ y)S single crystals, with copper sulphide. An electroplating technique has been used to control the phase of copper sulphide by changing the electric field during its formation. Different phases of Cu(_x)S have been identified directly using Reflection High Energy Diffraction (RHEED), and indirectly from spectral response measurements. A dramatic change in the spectral response accompanying the reduction in the covellite response associated with an increase in that from chalcocite following argon heat treatment has been achieved. The change from the djurleite phase to that of chalcocite has also been obtained by using argon heat treatment for 5 minutes at 200 C. This effect was found to be reversible in that layers of chalcocite were converted to djurleite when air was used as the ambient for the heat treatment. C-V measurements have demonstrated that with increasing plating bias the donor concentration decreases at first before it assumes a constant value. This led to the effect of decreasing the junction capacitance as the width of the depletion region changed. The problem of the stability of the CdS-Cu(_2)S photovoltaic devices formed by wet plating" is addressed by studying the combined effects of the substrate onto which the CdS is deposited and the ambient used during annealing. Thin film cells have been prepared on both Ag/Cr and SnO substrates, and the device characteristics for each have been investigated as a function of annealing ambient. The results have shown that devices formed on Ag/Cr substrates were more stable following annealing in air than in argon, while the converse was true for cells fabricated on SnO(_x) substrates. The degradation effects of CdS-Cu(_2) S photovoltaic cells have been investigated. While devices stored in the dark showed little or no degradation, those maintained under illumination exhibited a significant deterioration in all operational parameters over a four week period. As far as the combined effect of temperature and ambient on the stability of cells are concerned, it was found that the ageing of devices in argon at room temperature in the dark was negligible, and moreover the fill factor was observed to improve marginally. When the devices were stored in the same ambient conditions at 50 C, they showed a significant improvement in the fill factor, but simultaneously exhibited a considerable reduction in the short circuit current. This process was reversible, since the sensitivity of degraded devices could be restored by annealing them in a hydrogen/nitrogen mixture. By comparing Electron Spectroscopy for Chemical Analysis (ESCA) studies with solar cell device characteristics, it has been shown that the formation of copper oxide on the Cu(_2)S surface plays a significant role in the degradation of CdS-Cu(_2) S devices. The extent of the cross-over between the dark and light J-V characteristics is a function of the period of etching used prior to junction formation. The variation of current and diode factor has been established as a function of the bias value. The dependence of forward current on the temperature at fixed forward voltage has also been investigated. Finally this work has shown that an increase in V(_oc) can be achieved when Cd(_0◦8)Zn(_0◦2)S is used as a base material for solar cells instead of CdS. Different traps were identified through a photocapacitance investigation. An important trap was found at 0.78eV below the conduction band. It has been demonstrated that the effect of this level was found to be diminished much more slowly when the annealing was carried out in argon rather than in air. This level may play an important role in the Cd(0◦8) Zn(0◦2)S-Cu(_2)S solar cell properties.
110

Conservatories and domestic heating

Felgate, G. B. January 1987 (has links)
Passive solar gains to buildings in North European Climates can be significant and an investigation is made into the effect of orientation upon solar gains based upon known weather data. The conservatory is a particularly useful collector because of its inclusion to existing houses and its desirability to the householder for reasons other than solar collection. A conservatory was adapted and monitored. A computer model was written. The behaviour of the conservatory was examined for various criteria. The possibility of inclusion of a conservatory into houses in the existing housing stock was examined. The effect of occupancy on heating demand and solar delivery was reviewed and the likely overall energy saving was examined. A new house system was developed including the use of a first floor concrete slab and a gas warm air heating unit. A concrete floor slab was cast to examine its storage potential. A preliminary design for the heating system of the new houses was undertaken.

Page generated in 0.0395 seconds