• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 132
  • 106
  • 84
  • 11
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Solar energy in construction : an assessment of solar wall thermal performance in Europe

Wormald, Roy January 1998 (has links)
No description available.
122

Crystalline silicon thin film growth by ECR plasma CVD for solar cells

Wang, Licai January 1999 (has links)
No description available.
123

Solar cells based on electrodeposited Cds and CdTe films

McGregor, Stephen Mark January 1999 (has links)
The aim of this study was to understand the properties of glass/TCO/CdS/CdTe/metal solar cells, the CdS and CdTe being grown by aqueous electrodeposition. Deposited films and completed cells were characterised using electrical, structural and optical techniques. This report describes the production of well-formed polycrystalline CdS and CdTe with well defined XRD peaks and band gap. Experiments were performed to investigate the pre-conditioning of the CdTe bath on the overall cell performance. Pre-conditioning the CdTe deposition bath was found to improve the Voc value of the completed devices. It has been known for some time that treating the CdTe layer of a CdS/CdTe solar cell with chlorine brings about significant improvements in the efficiency of these devices. This report presents results on a systematic variation of the chlorine concentration within a CdTe deposition bath. Solar simulated I-V measurements of completed devices clearly show that the addition of CdCl[2] to the CdTe deposition bath significantly improved the efficiency values for the glass/TCO/CdS/CdTe/metal devices. The electrical parameter most significantly affected by the addition of chlorine is the J[sc] value. In terms of the Voc performance of the device, this investigation showed that there was a trend of improving Voc with increasing chlorine concentration. Addition of chlorine also produces improvements in the preferred orientation of CdTe films as measured by XRD. Optical absorption results showed a correlation that the minima of the band gap vs. chlorine concentration graph for annealed samples matches up with the maximum in the efficiency and J[sc] graphs. To investigate whether this phenomenon was specific to chlorine or was displayed by other elements, similar experiments were performed with no chlorine inclusion but varying the indium concentration in the deposition bath. Solar simulated I-V measurements of completed devices clearly show that the addition of In[2](SO[4])[3] to the CdTe deposition bath significantly reduced the efficiency values for the glass/TCO/CdS/CdTe/metal devices. The electrical parameter most significantly affected by the addition of indium is the J[sc] value. The addition of indium also had a detrimental effect on the preferred orientation measured by XRD.
124

Influence of environmental conditions and architectural form on the design and thermal performance of the flat-plate solar collector system

Robertson, Peter January 1981 (has links)
Solar heating systems, by the nature of their design and inherent thermal mass, are sensitive to the changes in the prevailing climatic conditions. A computer program has been developed to predict and display the dynamic performance of solar water heating systems and their installation designs under transient climatic and restricted site conditions. A multi-node capacitance model describes the dynamic heat transfer and energy storage processes within the solar collector unit, storage tank and the connecting pipework. This simulation model predicts the dynamic system performance under intermittent solar radiation, system operation and energy usage conditions. Validation studies have been carried out on the computer simulation results against the performance of a purpose-built solar collector test facility and a commercial solar water heating system in actual operation in Aberdeen. A good correlation has been obtained in both cases. The accuracy of the prediction was found to be dependant upon the time interval of the available climatic data and the complexity of the thermal simulation network chosen. The experimental facilities and the computer simulation program have been developed to investigate the effect of integrating the solar collector installation as part of the roof fabric, as a possible technique to improve the system performance in exposed locations. The application of this computer program lies in the development of innovative solar collector system and installation designs to achieve optimum system performance under transient climatic and restricted urban site conditions.
125

Preparation and characterisation of thin film CdS/CdTe solar cells produced by close space sublimation

Alamri, Saleh Naeeman O. January 1999 (has links)
No description available.
126

Behavioural responses to photovoltaic systems in the UK domestic sector

Keirstead, James January 2006 (has links)
Microgeneration technologies, such as solar photovoltaics (PV), have recently been cited as a potential solution to energy policy challenges such as climate change and security of supply. International evidence suggests that the benefit of a PV installation will depend on both the amount of electricity generated and the technology’s influence on energy consumption behaviour. This study seeks to quantify and explain this ‘double-dividend’ effect by examining photovoltaics in the UK domestic sector. Questionnaire and interview data were collected from owner-occupier PV households, revealing that the installation of PV increased awareness of electricity generation and consumption in the home. Guided by monitoring devices, an overall electricity saving (~8%) and load-shifting behaviours were observed. Although the installation of PV followed a series of other energy-saving measures, respondents showed an ongoing commitment to environmentally responsible behaviour and further reduction of the carbon footprint of household energy consumption. PV household electricity data and interviews with industry and government found that electricity tariffs, metering and other institutional constraints were important determinants of a household’s behavioural response. As these parts of the domestic PV system are largely still evolving, it is recommended that households and industry work together to develop systems that support sustainable electricity use, for both the early adopting households studied here and future adopters.
127

Microstructure of absorber layers in CdTe/Cds solar cells

Cousins, Michael Andrew January 2001 (has links)
This work concerns the microstructure of CSS-grown CdTe layers used for CdTe/CdS solar cells. Particular attention is given to how the development of microstructure on annealing with CdCl(_2) may correlate with increases in efficiency. By annealing pressed pellets of bulk CdTe powder, it is shown that microstructural change does occur on heating the material, enhanced by the inclusion of CdCl(_2) flux. However, the temperature required to cause significant effects is demonstrated to be higher than that at which heavy oxidation takes place. The dynamics of this oxidation are also examined. To investigate microstructural evolution in thin-films of CdTe, bi-layers of CdTe and CdS are examined by bevelling, thus revealing the microstructure to within ~1 µm of the interface. This allows optical microscopy and subsequent image analysis of grain structure. The work shows that the grain- size, which is well described by the Rayleigh distribution, varies linearly throughout the layer, but is invariant under CdCl(_2) treatment. Electrical measurements on these bi-layers, however, showed increased efficiency, as is widely reported. This demonstrates that the efficiency of these devices is not dictated by the bulk microstructure. Further, the region within 1 µm of the interface, of similar bi-layers to above, is examined by plan-view TEM. This reveals five-fold grain-growth on CdCl(_2) treatment. Moreover, these grains show a considerably smaller grain size than expected from extrapolating the linear trend in the bulk. These observations are explained in terms of the pinning of the CdTe grain size to the underlying CdS, and the small grain size this causes. A simple model was proposed for a link between the grain-growth to the efficiency improvement. The study also examines the behaviour of defects within grains upon CdCl(_2) treatment provided the first direct evidence of recovery on CdCl(_2) treatment in this system. Finally, a computer model is presented to describe the evolution of microstructure during growth. This is shown to be capable of reproducing the observed variation in grain size, but its strict physical accuracy is questioned.
128

Daylighting applications of micro-textured optical surfaces

Bhatia, Rikki January 2001 (has links)
Daylighting is the use of natural light to replace artificial light. In traditional rooms sunlight will only illuminate the area closest to the window due to the high solar angle. The rear of the room appears gloomy and occupants will use electric lighting even though there is sufficient daylight to illuminate the interior. The first section of this thesis reports on the application of micro-prisms to glazing. Such systems could improve the penetration of the light and reduce the energy bill. Fig 1: (Left): A traditional window. (Right) A window with the top third coated in microprisms. The aim of the work is to develop suitable structures than can be easily and cheaply mass produced using an industrial UV embossing process. Whenever possible the requirements of this process dictate the physical characteristics of the microstructures. The development process includes all the stages from design to full-scale testing of the prototypes in an office. Several different mechanical methods are used to produce prismatic arrays that conform to an initial design calculation. Each sample is evaluated in terms of its physical characteristics, its optical properties and finally its ability to improve illumination within a room. The latter aspect is determined, not only by measurement, but also the subjective assessment of occupants. The second micro-textured surface to be examined is the microlens. Three systems are investigated: - A controlled diffuser incorporating cylindrical lenses to improve the distribution of the daylight. - An afocal pair of lenses to improve the penetration of daylight through beam-steering. - An angular filter to exclude direct sunlight while admitting diffuse light. Most of the research is concerned with the third system. On sunny days windows can cause sufficient glare that occupants will pull the venetian blinds. Not only will this exclude the direct sunlight but also the diffuse daylight, cause darkening of the room and leading to the use of artificial light. The angular filter or 'solar shade' uses microlenses to image the direct sunlight which can then be blocked by circular obturations. The diffuse sunlight is not focused and therefore transmitted so the room is not darkened. The research is based on experimentation with small-scale systems and computer modelling to optimise the system. The results show potential improvements over new 'smart' windows although mechanical tolerances are high.
129

An investigation into the efficiency enhancement of strained and strain-balanced quantum well solar cells

Ekins-Daukes, Nicholas John January 2000 (has links)
No description available.
130

Density functional theory study of adsorption of cronconate dyes on TiO2 Anatase (010) and (100) surfaces

Ranwaha, Tshifhiwa Steven 18 May 2019 (has links)
MSc (Physics) / Department of Physics / Currently the dye sensitized solar cells have attracted more attention due to their low cost, transparency and flexibility. These types of solar cells use the dye molecule adsorbed on TiO2 semiconductor in Nano architecture with the role of absorbing photons, in recent research attempts are being made to shifts the absorption spectral of TiO2 to visible and near infrared–region of solar spectrum to achieve maximum photo absorption which yields to an increase in the efficiency of the dye sensitized solar cells. In the current study, density functional theory (DFT) was used to model two croconate dyes (CR1 and CR2), one with an electron donating methyl group (CR1) and the other with an electron –withdrawing caboxyl group (CR2). The geometric, electronic and optical properties of these dyes were compared. The adsorption behaviour of the two dyes on (010 and 100) anatase TiO2 surfaces were investigated in this study by employing first principle calculation based on DFT using a plane-wave pseudo potential method. The generalized gradient approximation (GGA) was used in the scheme of Perdew-Burke Ernzerhof to describe the exchange -correlation function as implemented in the CASTEP package in Material Studio of BIOVIA. The adsorption results shows a spontaneous electron injection followed by efficient regeneration of the oxidized dye molecules by the electrolyte and strong binding ability of CR2 to the TiO2 surface, but also shows a comparable binding strength of CR1. The results of this study will help in the design of high efficient dye for DSSCs. / NRF

Page generated in 0.0462 seconds