1 |
Dataflow Processing in Memory Achieves Significant Energy EfficiencyShelor, Charles F. 08 1900 (has links)
The large difference between processor CPU cycle time and memory access time, often referred to as the memory wall, severely limits the performance of streaming applications. Some data centers have shown servers being idle three out of four clocks. High performance instruction sequenced systems are not energy efficient. The execute stage of even simple pipeline processors only use 9% of the pipeline's total energy. A hybrid dataflow system within a memory module is shown to have 7.2 times the performance with 368 times better energy efficiency than an Intel Xeon server processor on the analyzed benchmarks.
The dataflow implementation exploits the inherent parallelism and pipelining of the application to improve performance without the overhead functions of caching, instruction fetch, instruction decode, instruction scheduling, reorder buffers, and speculative execution used by high performance out-of-order processors. Coarse grain reconfigurable logic in an energy efficient silicon process provides flexibility to implement multiple algorithms in a low energy solution. Integrating the logic within a 3D stacked memory module provides lower latency and higher bandwidth access to memory while operating independently from the host system processor.
|
2 |
Investigation of the Magnetic- and Electron Transport Properties of Fe/MgO SuperlatticesRostom, Ali, Holmgren, David January 2022 (has links)
Anti-ferromagnetic interlayer exchange coupling between iron layers in Fe/MgO superlatices have recently been of interest among researchers for its potential application in 3D memory storage in computers (hard drives) and in the research field of spintronics. Thinfilms and bi-layers between the 10-100 ångström range in thicknesses were analyzed for its resistive properties during different conditions. Both mono-layers and superlatices were experimented with.The resistivity of the films was measured with both the four-probe method and the Van der Pauw method. Because of mechanical limitations with respect to the direction of the external magnetic field, the Van der Pauw method had to be used for the superlattice measurements. The collected data from all the measurments of the superlattice suggest that the electric current is not only passing the capping layer of the lattice but did not however show any sign of resisitive properties changing with changing magnetic profile. The resistivity of thesuperlattice was similar to that of the resistivity calculated from data when the external magnetic field was off. The results from this study show for the first time that it is possible to measure the electronic transport within an Fe/MgO superlattice which provides a basis for futher investigations.
|
Page generated in 0.0227 seconds