• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 5
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 24
  • 22
  • 15
  • 15
  • 15
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

2D to 3D conversion with direct geometrical search and approximation spaces

Borkowski, Maciej 14 September 2007 (has links)
This dissertation describes the design and implementation of a system that has been designed to extract 3D information from pairs of 2D images. System input consists of two images taken by an ordinary digital camera. System output is a full 3D model extracted from 2D images. There are no assumptions about the positions of the cameras during the time when the images are being taken, but the scene must not undergo any modifications. The process of extracting 3D information from 2D images consists of three basic steps. First, point matching is performed. The main contribution of this step is the introduction of an approach to matching image segments in the context of an approximation space. The second step copes with the problem of estimating external camera parameters. The proposed solution to this problem uses 3D geometry rather than the fundamental matrix widely used in 2D to 3D conversion. In the proposed approach (DirectGS), the distances between reprojected rays for all image points are minimised. The contribution of the approach considered in this step is a definition of an optimal search space for solving the 2D to 3D conversion problem and introduction of an efficient algorithm that minimises reprojection error. In the third step, the problem of dense matching is considered. The contribution of this step is the introduction of a proposed approach to dense matching of 3D object structures that utilises the presence of points on lines in 3D space. The theory and experiments developed for this dissertation demonstrate the usefulness of the proposed system in the process of digitizing 3D information. The main advantage of the proposed approach is its low cost, simplicity in use for an untrained user and the high precision of reconstructed objects. / October 2007
12

Construction of Appearance Manifold with Embedded View-Dependent Covariance Matrix for 3D Object Recognition

MURASE, Hiroshi, IDE, Ichiro, TAKAHASHI, Tomokazu, Lina 01 April 2008 (has links)
No description available.
13

Evaluation Of Visual Cues Of Three Dimensional Virtual Environments For Helicopter Simulators

Cetin, Yasemin 01 September 2008 (has links) (PDF)
Flight simulators are widely used by the military, civil and commercial aviation. Visual cues are an essential part of helicopter flight. The required cues for hover are especially large due to closeness to the ground and small movements. In this thesis, density and height parameters of the 3D (Three Dimensional) objects in the scene are analyzed to find their effect on hovering and low altitude flight. An experiment is conducted using a PC-based flight simulator with three LCD monitors and flight control set. Ten professional military pilots participated in the experiment. v Results revealed that object density and object height are effective on the horizontal and vertical hovering performance. There is a peak point after which increasing the density does not improve the performance. In low altitude flight, altitude control is positively affected by smaller object height. However, pilots prefer the scenes composed of the high and mixture objects while hovering and flying at low altitude. Distance estimation is affected by the interaction of the object density and height.
14

3d Object Recognition By Geometric Hashing For Robotics Applications

Hozatli, Aykut 01 February 2009 (has links) (PDF)
The main aim of 3D Object recognition is to recognize objects under translation and rotation. Geometric Hashing is one of the methods which represents a rotation and translation invariant approach and provides indexing of structural features of the objects in an efficient way. In this thesis, Geometric Hashing is used to store the geometric relationship between discriminative surface properties which are based on surface curvature. In this thesis surface is represented by shape index and splash where shape index defines particular shaped surfaces and splash introduces topological information. The method is tested on 3D object databases and compared with other methods in the literature.
15

3d Geometric Hashing Using Transform Invariant Features

Eskizara, Omer 01 April 2009 (has links) (PDF)
3D object recognition is performed by using geometric hashing where transformation and scale invariant 3D surface features are utilized. 3D features are extracted from object surfaces after a scale space search where size of each feature is also estimated. Scale space is constructed based on orientation invariant surface curvature values which classify each surface point&#039 / s shape. Extracted features are grouped into triplets and orientation invariant descriptors are defined for each triplet. Each pose of each object is indexed in a hash table using these triplets. For scale invariance matching, cosine similarity is applied for scale variant triple variables. Tests were performed on Stuttgart database where 66 poses of 42 objects are stored in the hash table during training and 258 poses of 42 objects are used during testing. %90.97 recognition rate is achieved.
16

3d Object Recognition Using Scale Space Of Curvatures

Akagunduz, Erdem 01 January 2011 (has links) (PDF)
In this thesis, a generic, scale and resolution invariant method to extract 3D features from 3D surfaces, is proposed. Features are extracted with their scale (metric size and resolution) from range images using scale-space of 3D surface curvatures. Different from previous scale-space approaches / connected components within the classified curvature scale-space are extracted as features. Furthermore, scales of features are extracted invariant of the metric size or the sampling of the range images. Geometric hashing is used for object recognition where scaled, occluded and both scaled and occluded versions of range images from a 3D object database are tested. The experimental results under varying scale and occlusion are compared with SIFT in terms of recognition capabilities. In addition, to emphasize the importance of using scale space of curvatures, the comparative recognition results obtained with single scale features are also presented.
17

Steps towards the object semantic hierarchy

Xu, Changhai, 1977- 17 November 2011 (has links)
An intelligent robot must be able to perceive and reason robustly about its world in terms of objects, among other foundational concepts. The robot can draw on rich data for object perception from continuous sensory input, in contrast to the usual formulation that focuses on objects in isolated still images. Additionally, the robot needs multiple object representations to deal with different tasks and/or different classes of objects. We propose the Object Semantic Hierarchy (OSH), which consists of multiple representations with different ontologies. The OSH factors the problems of object perception so that intermediate states of knowledge about an object have natural representations, with relatively easy transitions from less structured to more structured representations. Each layer in the hierarchy builds an explanation of the sensory input stream, in terms of a stochastic model consisting of a deterministic model and an unexplained "noise" term. Each layer is constructed by identifying new invariants from the previous layer. In the final model, the scene is explained in terms of constant background and object models, and low-dimensional dynamic poses of the observer and objects. The OSH contains two types of layers: the Object Layers and the Model Layers. The Object Layers describe how the static background and each foreground object are individuated, and the Model Layers describe how the model for the static background or each foreground object evolves from less structured to more structured representations. Each object or background model contains the following layers: (1) 2D object in 2D space (2D2D): a set of constant 2D object views, and the time-variant 2D object poses, (2) 2D object in 3D space (2D3D): a collection of constant 2D components, with their individual time-variant 3D poses, and (3) 3D object in 3D space (3D3D): the same collection of constant 2D components but with invariant relations among their 3D poses, and the time-variant 3D pose of the object as a whole. In building 2D2D object models, a fundamental problem is to segment out foreground objects in the pixel-level sensory input from the background environment, where motion information is an important cue to perform the segmentation. Traditional approaches for moving object segmentation usually appeal to motion analysis on pure image information without exploiting the robot's motor signals. We observe, however, that the background motion (from the robot's egocentric view) has stronger correlation to the robot's motor signals than the motion of foreground objects. Based on this observation, we propose a novel approach to segmenting moving objects by learning homography and fundamental matrices from motor signals. In building 2D3D and 3D3D object models, estimating camera motion parameters plays a key role. We propose a novel method for camera motion estimation that takes advantage of both planar features and point features and fuses constraints from both homography and essential matrices in a single probabilistic framework. Using planar features greatly improves estimation accuracy over using point features only, and with the help of point features, the solution ambiguity from a planar feature is resolved. Compared to the two classic approaches that apply the constraint of either homography or essential matrix, the proposed method gives more accurate estimation results and avoids the drawbacks of the two approaches. / text
18

2D to 3D conversion with direct geometrical search and approximation spaces

Borkowski, Maciej 14 September 2007 (has links)
This dissertation describes the design and implementation of a system that has been designed to extract 3D information from pairs of 2D images. System input consists of two images taken by an ordinary digital camera. System output is a full 3D model extracted from 2D images. There are no assumptions about the positions of the cameras during the time when the images are being taken, but the scene must not undergo any modifications. The process of extracting 3D information from 2D images consists of three basic steps. First, point matching is performed. The main contribution of this step is the introduction of an approach to matching image segments in the context of an approximation space. The second step copes with the problem of estimating external camera parameters. The proposed solution to this problem uses 3D geometry rather than the fundamental matrix widely used in 2D to 3D conversion. In the proposed approach (DirectGS), the distances between reprojected rays for all image points are minimised. The contribution of the approach considered in this step is a definition of an optimal search space for solving the 2D to 3D conversion problem and introduction of an efficient algorithm that minimises reprojection error. In the third step, the problem of dense matching is considered. The contribution of this step is the introduction of a proposed approach to dense matching of 3D object structures that utilises the presence of points on lines in 3D space. The theory and experiments developed for this dissertation demonstrate the usefulness of the proposed system in the process of digitizing 3D information. The main advantage of the proposed approach is its low cost, simplicity in use for an untrained user and the high precision of reconstructed objects.
19

2D to 3D conversion with direct geometrical search and approximation spaces

Borkowski, Maciej 14 September 2007 (has links)
This dissertation describes the design and implementation of a system that has been designed to extract 3D information from pairs of 2D images. System input consists of two images taken by an ordinary digital camera. System output is a full 3D model extracted from 2D images. There are no assumptions about the positions of the cameras during the time when the images are being taken, but the scene must not undergo any modifications. The process of extracting 3D information from 2D images consists of three basic steps. First, point matching is performed. The main contribution of this step is the introduction of an approach to matching image segments in the context of an approximation space. The second step copes with the problem of estimating external camera parameters. The proposed solution to this problem uses 3D geometry rather than the fundamental matrix widely used in 2D to 3D conversion. In the proposed approach (DirectGS), the distances between reprojected rays for all image points are minimised. The contribution of the approach considered in this step is a definition of an optimal search space for solving the 2D to 3D conversion problem and introduction of an efficient algorithm that minimises reprojection error. In the third step, the problem of dense matching is considered. The contribution of this step is the introduction of a proposed approach to dense matching of 3D object structures that utilises the presence of points on lines in 3D space. The theory and experiments developed for this dissertation demonstrate the usefulness of the proposed system in the process of digitizing 3D information. The main advantage of the proposed approach is its low cost, simplicity in use for an untrained user and the high precision of reconstructed objects.
20

Feature extraction from 3D point clouds / Extração de atributos robustos a partir de nuvens de pontos 3D

Carlos André Braile Przewodowski Filho 13 March 2018 (has links)
Computer vision is a research field in which images are the main object of study. One of its category of problems is shape description. Object classification is one important example of applications using shape descriptors. Usually, these processes were performed on 2D images. With the large-scale development of new technologies and the affordable price of equipment that generates 3D images, computer vision has adapted to this new scenario, expanding the classic 2D methods to 3D. However, it is important to highlight that 2D methods are mostly dependent on the variation of illumination and color, while 3D sensors provide depth, structure/3D shape and topological information beyond color. Thus, different methods of shape descriptors and robust attributes extraction were studied, from which new attribute extraction methods have been proposed and described based on 3D data. The results obtained from well known public datasets have demonstrated their efficiency and that they compete with other state-of-the-art methods in this area: the RPHSD (a method proposed in this dissertation), achieved 85:4% of accuracy on the University of Washington RGB-D dataset, being the second best accuracy on this dataset; the COMSD (another proposed method) has achieved 82:3% of accuracy, standing at the seventh position in the rank; and the CNSD (another proposed method) at the ninth position. Also, the RPHSD and COMSD methods have relatively small processing complexity, so they achieve high accuracy with low computing time. / Visão computacional é uma área de pesquisa em que as imagens são o principal objeto de estudo. Um dos problemas abordados é o da descrição de formatos (em inglês, shapes). Classificação de objetos é um importante exemplo de aplicação que usa descritores de shapes. Classicamente, esses processos eram realizados em imagens 2D. Com o desenvolvimento em larga escala de novas tecnologias e o barateamento dos equipamentos que geram imagens 3D, a visão computacional se adaptou para este novo cenário, expandindo os métodos 2D clássicos para 3D. Entretanto, estes métodos são, majoritariamente, dependentes da variação de iluminação e de cor, enquanto os sensores 3D fornecem informações de profundidade, shape 3D e topologia, além da cor. Assim, foram estudados diferentes métodos de classificação de objetos e extração de atributos robustos, onde a partir destes são propostos e descritos novos métodos de extração de atributos a partir de dados 3D. Os resultados obtidos utilizando bases de dados 3D públicas conhecidas demonstraram a eficiência dos métodos propóstos e que os mesmos competem com outros métodos no estado-da-arte: o RPHSD (um dos métodos propostos) atingiu 85:4% de acurácia, sendo a segunda maior acurácia neste banco de dados; o COMSD (outro método proposto) atingiu 82:3% de acurácia, se posicionando na sétima posição do ranking; e o CNSD (outro método proposto) em nono lugar. Além disso, os métodos RPHSD têm uma complexidade de processamento relativamente baixa. Assim, eles atingem uma alta acurácia com um pequeno tempo de processamento.

Page generated in 0.0484 seconds