• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D Surface Reconstruction from Multi-Camera Stereo with Disturbed Processing

Arora, Gorav 03 1900 (has links)
In this thesis a system which extracts 3D surfaces of arbitrary scenes under natural illumination is constructed using low-cost, off-the-shelf components. The system is implemented over a network of workstations using standardized distributed software technology. The architecture of the system is highly influenced by the performance requirements of multimedia applications which require 3D computer vision. Visible scene surfaces are extracted using a passive multi-baseline stereo technique. The implementation efficiently supports any number of cameras in arbitrary positions through an effective rectification strategy. The distributed software components interact through CORBA and work cooperatively in parallel. Experiments are performed to assess the effects of various parameters on the performance of the system and to demonstrate the feasibility of this approach. / Thesis / Master of Engineering (ME)
2

Compressed Sensing in the Presence of Side Information

Rostami, Mohammad January 2012 (has links)
Reconstruction of continuous signals from a number of their discrete samples is central to digital signal processing. Digital devices can only process discrete data and thus processing the continuous signals requires discretization. After discretization, possibility of unique reconstruction of the source signals from their samples is crucial. The classical sampling theory provides bounds on the sampling rate for unique source reconstruction, known as the Nyquist sampling rate. Recently a new sampling scheme, Compressive Sensing (CS), has been formulated for sparse signals. CS is an active area of research in signal processing. It has revolutionized the classical sampling theorems and has provided a new scheme to sample and reconstruct sparse signals uniquely, below Nyquist sampling rates. A signal is called (approximately) sparse when a relatively large number of its elements are (approximately) equal to zero. For the class of sparse signals, sparsity can be viewed as prior information about the source signal. CS has found numerous applications and has improved some image acquisition devices. Interesting instances of CS can happen, when apart from sparsity, side information is available about the source signals. The side information can be about the source structure, distribution, etc. Such cases can be viewed as extensions of the classical CS. In such cases we are interested in incorporating the side information to either improve the quality of the source reconstruction or decrease the number of the required samples for accurate reconstruction. A general CS problem can be transformed to an equivalent optimization problem. In this thesis, a special case of CS with side information about the feasible region of the equivalent optimization problem is studied. It is shown that in such cases uniqueness and stability of the equivalent optimization problem still holds. Then, an efficient reconstruction method is proposed. To demonstrate the practical value of the proposed scheme, the algorithm is applied on two real world applications: image deblurring in optical imaging and surface reconstruction in the gradient field. Experimental results are provided to further investigate and confirm the effectiveness and usefulness of the proposed scheme.
3

Inverse geometry : from the raw point cloud to the 3d surface : theory and algorithms

Digne, Julie 23 November 2010 (has links) (PDF)
Many laser devices acquire directly 3D objects and reconstruct their surface. Nevertheless, the final reconstructed surface is usually smoothed out as a result of the scanner internal de-noising process and the offsets between different scans. This thesis, working on results from high precision scans, adopts the somewhat extreme conservative position, not to loose or alter any raw sample throughout the whole processing pipeline, and to attempt to visualize them. Indeed, it is the only way to discover all surface imperfections (holes, offsets). Furthermore, since high precision data can capture the slightest surface variation, any smoothing and any sub-sampling can incur in the loss of textural detail.The thesis attempts to prove that one can triangulate the raw point cloud with almost no sample loss. It solves the exact visualization problem on large data sets of up to 35 million points made of 300 different scan sweeps and more. Two major problems are addressed. The first one is the orientation of the complete raw point set, an the building of a high precision mesh. The second one is the correction of the tiny scan misalignments which can cause strong high frequency aliasing and hamper completely a direct visualization.The second development of the thesis is a general low-high frequency decomposition algorithm for any point cloud. Thus classic image analysis tools, the level set tree and the MSER representations, are extended to meshes, yielding an intrinsic mesh segmentation method.The underlying mathematical development focuses on an analysis of a half dozen discrete differential operators acting on raw point clouds which have been proposed in the literature. By considering the asymptotic behavior of these operators on a smooth surface, a classification by their underlying curvature operators is obtained.This analysis leads to the development of a discrete operator consistent with the mean curvature motion (the intrinsic heat equation) defining a remarkably simple and robust numerical scale space. By this scale space all of the above mentioned problems (point set orientation, raw point set triangulation, scan merging, segmentation), usually addressed by separated techniques, are solved in a unified framework.
4

Compressed Sensing in the Presence of Side Information

Rostami, Mohammad January 2012 (has links)
Reconstruction of continuous signals from a number of their discrete samples is central to digital signal processing. Digital devices can only process discrete data and thus processing the continuous signals requires discretization. After discretization, possibility of unique reconstruction of the source signals from their samples is crucial. The classical sampling theory provides bounds on the sampling rate for unique source reconstruction, known as the Nyquist sampling rate. Recently a new sampling scheme, Compressive Sensing (CS), has been formulated for sparse signals. CS is an active area of research in signal processing. It has revolutionized the classical sampling theorems and has provided a new scheme to sample and reconstruct sparse signals uniquely, below Nyquist sampling rates. A signal is called (approximately) sparse when a relatively large number of its elements are (approximately) equal to zero. For the class of sparse signals, sparsity can be viewed as prior information about the source signal. CS has found numerous applications and has improved some image acquisition devices. Interesting instances of CS can happen, when apart from sparsity, side information is available about the source signals. The side information can be about the source structure, distribution, etc. Such cases can be viewed as extensions of the classical CS. In such cases we are interested in incorporating the side information to either improve the quality of the source reconstruction or decrease the number of the required samples for accurate reconstruction. A general CS problem can be transformed to an equivalent optimization problem. In this thesis, a special case of CS with side information about the feasible region of the equivalent optimization problem is studied. It is shown that in such cases uniqueness and stability of the equivalent optimization problem still holds. Then, an efficient reconstruction method is proposed. To demonstrate the practical value of the proposed scheme, the algorithm is applied on two real world applications: image deblurring in optical imaging and surface reconstruction in the gradient field. Experimental results are provided to further investigate and confirm the effectiveness and usefulness of the proposed scheme.
5

Inverse geometry : from the raw point cloud to the 3d surface : theory and algorithms / Géométrie inverse : du nuage de points brut à la surface 3D : théorie et algorithmes

Digne, Julie 23 November 2010 (has links)
De nombreux scanners laser permettent d'obtenir la surface 3D a partir d'un objet. Néanmoins, la surface reconstruite est souvent lisse, ce qui est du au débruitage interne du scanner et aux décalages entre les scans. Cette these utilise des scans haute precision et choisit de ne pas perdre ni alterer les echantillons initiaux au cours du traitement afin de les visualiser. C'est en effet la seule façon de decouvrir les imperfections (trous, decalages de scans). De plus, comme les donnees haute precision capturent meme le plus leger detail, tout debruitage ou sous-echantillonnage peut amener a perdre ces details.La these s'attache a prouver que l'on peut trianguler le nuage de point initial en ne perdant presque aucun echantillon. Le probleme de la visualisation exacte sur des donnees de plus de 35 millions de points et de 300 scans differents est ainsi resolu. Deux problemes majeurs sont traites: le premier est l'orientation du nuage de point brut complet et la creation d'un maillage. Le second est la correction des petits decalages entre les scans qui peuvent creer un tres fort aliasing et compromettre la visualisation de la surface. Le second developpement de la these est une decomposition des nuages de points en hautes/basses frequences. Ainsi, des methodes classiques pour l'analyse d'image, l'arbre des ensembles de niveau et la representation MSER, sont etendues aux maillages, ce qui donne une methode intrinseque de segmentation de maillages. Une analyse mathematiques d'operateurs differentiels discrets, proposes dans la litterature et operant sur des nuages de points est realisee. En considerant les developpements asymptotiques de ces operateurs sur une surface reguliere, ces operateurs peuvent etre classifies. Cette analyse amene au developpement d'un operateur discret consistant avec Ie mouvement par courbure moyenne (l'equation de la chaleur intrinseque) definissant ainsi un espace-echelle numerique simple et remarquablement robuste. Cet espace-echelle permet de resoudre de maniere unifiee tous les problemes mentionnes auparavant (orientation et triangulation du nuage de points, fusion de scans, segmentation de maillages) qui sont ordinairement traites avec des techniques distinctes. / Many laser devices acquire directly 3D objects and reconstruct their surface. Nevertheless, the final reconstructed surface is usually smoothed out as a result of the scanner internal de-noising process and the offsets between different scans. This thesis, working on results from high precision scans, adopts the somewhat extreme conservative position, not to loose or alter any raw sample throughout the whole processing pipeline, and to attempt to visualize them. Indeed, it is the only way to discover all surface imperfections (holes, offsets). Furthermore, since high precision data can capture the slightest surface variation, any smoothing and any sub-sampling can incur in the loss of textural detail.The thesis attempts to prove that one can triangulate the raw point cloud with almost no sample loss. It solves the exact visualization problem on large data sets of up to 35 million points made of 300 different scan sweeps and more. Two major problems are addressed. The first one is the orientation of the complete raw point set, an the building of a high precision mesh. The second one is the correction of the tiny scan misalignments which can cause strong high frequency aliasing and hamper completely a direct visualization.The second development of the thesis is a general low-high frequency decomposition algorithm for any point cloud. Thus classic image analysis tools, the level set tree and the MSER representations, are extended to meshes, yielding an intrinsic mesh segmentation method.The underlying mathematical development focuses on an analysis of a half dozen discrete differential operators acting on raw point clouds which have been proposed in the literature. By considering the asymptotic behavior of these operators on a smooth surface, a classification by their underlying curvature operators is obtained.This analysis leads to the development of a discrete operator consistent with the mean curvature motion (the intrinsic heat equation) defining a remarkably simple and robust numerical scale space. By this scale space all of the above mentioned problems (point set orientation, raw point set triangulation, scan merging, segmentation), usually addressed by separated techniques, are solved in a unified framework.
6

Multimodal high-resolution mapping of contracting intact Langendorff-perfused hearts

Schröder-Schetelig, Johannes 07 September 2020 (has links)
No description available.
7

3D model z MRI / 3D shape from MRI

Menclík, Tomáš January 2012 (has links)
The main aim of the thesis is the reconstruction of three-dimensional surface from a~set of two-dimensional images. For the implementation of this application the programming language Java and its extension, that allows work with three-dimensional models, were chosen. First, viewing of three-dimensional models of two different file formats was necessary to allow. To create the three-dimensional models, the Marching Cubes algorithm was used. This algorithm is decribed theoretically in the text, description of the implementation and correction of deficiencies follows. Finally, the implementation of the inversion procedure of reconstruction of the three-dimensional surface, which is the extraction of two-dimensional images from the three-dimensional model, is described.

Page generated in 0.1216 seconds