• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sedimentation And Hydrodynamics of Whitianga Estuary

Reeve, Glen M.D January 2008 (has links)
Whitianga Estuary is a bayhead barrier type estuary located on the east of the Coromandel Peninsula, North Island, New Zealand. The catchment has undergone many land-use changes since pre-European settlement. In some areas of the catchment land-use has changed from native forest to grasslands to forestry and back to pasture. These changes in catchment land-use all contribute to increased sedimentation into the estuary. Development of the estuary itself has also occurred in recent times. Much growth has been focussed around the estuary due to Whitianga town-ship having a large boating community, and includes a 170 berth marina and wharf situated at the tidal inlet entrance to the estuary. These, and the extensive canal development engineering works can have substantial impacts on the sedimentation regime, and may modify tidal circulation, flushing, and sediment deposition within the estuary. The principle aim of this research is to assess hydrodynamics and sedimentation of the estuary for future management and development purposes, and also to model different scenarios in order to determine the most cost effective, and least obtrusive design for a proposed boat-ramp and approach channel near the marina. To determine sedimentation rates, sediment cores from four locations were collected to depths of 1 m. Coring locations were chosen based on preliminary model run results, selecting areas that appeared to be long-term sediment sinks of a stable nature. Cores were divided into 10 mm sections and prepared for 210Pb dating and heavy metal analysis, to make an assessment of the vertical sedimentation rates. Recent sedimentation rates were found to be as high as 9 mm/yr post-1950s and past sedimentation rates as high as 30 mm/yr pre-1950s. The use of heavy metal analysis for dating proved difficult as the background levels of the conservative elements used to normalise results varied, making the geochemical analysis approach inappropriate. As bathymetry is one of the most important aspects of modelling, a large amount of surveying was undertaken for this study. LiDAR, singlebeam data, and recent rectified aerial photographs were interpreted for the creation of a bathymetric grid file to be used for hydrodynamic modelling of the estuary. The 3DD numerical model was used to determine tidal flows and current velocities. From this initial hydrodynamic model a particle-tracking model was created to determine sediment transport pathways within the estuary. From the initial 20 m model it was then possible to create a number of nested model grids for the purpose of determining the best practice scenario for the creation of a proposed boat ramp and associated approach channel near the harbour entrance. Hydrodynamic results suggest that residual circulation in Whitianga Estuary is nearly in balance, with a low ebb tidal domination present. Particle tracking results suggest that sediment entrained and carried into and within the estuary will accumulate on the intertidal flats. Sediment transport modelling indicates that the impact of a proposed boat-ramp will result in sedimentation of the dredged approach channel due to reductions in residual and tidal velocities.
2

Applications and development of acoustic and microwave atomic force microscopy for high resolution tomography analysis / Applications et développement des microscopies à force atomique acoustique et micro-onde pour l'analyse tomographique haute résolution

Vitry, Pauline 10 June 2016 (has links)
La microscopie à force atomique (AFM) est un outil de caractérisation d’échantillons tant organiques qu’inorganiques d’intérêt en physique, en biologie et en métallurgie. Le champ d’investigation de la microscopie AFM reste néanmoins restreint à l’étude des propriétés surfaciques des échantillons et la caractérisation sub-surfacique à l’échelle nanométrique n’est pas envisageable au-delà de la nano-indentation. Lors de ce travail, nous nous sommes intéressés à deux techniques de sonde locale complémentaires pour l’investigation volumique haute résolution.La première technique proposée est la microscopie de champ proche ultrasonore (MS-AFM), mise en place et exploitée en collaboration avec Dr. L. Tétard de l’Université Centrale de Floride. Cette technique fournie des informations localisées en profondeur en utilisant des ondes acoustiques dans la gamme de fréquences du MHz. Une étude complète de l’influence des paramètres de fréquences a été réalisée sur des échantillons de calibration et a permis de valider un modèle d’interprétation numérique. Cette technique ultrasonore, non invasive, a été appliquée à la caractérisation de vésicules lipidiques au sein de bactéries lors d’une collaboration avec les Pr. A. Dazzi et M.-J. Virolle, de l’Université Paris Sud Orsay. Un couplage a été réalisé avec la microscopie AFM infra-rouge (AFM-IR). Cette étude a démontré le potentiel d’investigation et d’analyse volumique et chimique d’échantillons biologiques.La seconde technique étudiée est la microscopie micro-onde (SMM), développée en collaboration avec la société Keysight. Cette technique, tout comme la microscopie acoustique, est non invasive et conduit à une caractérisation physico-chimique basée sur l’interaction de micro-ondes (0.2-16 GHz) avec la matière. Dans le cas de métaux, un lien entre la fréquence et la profondeur d’investigation a été mis en évidence. Cette technique a été appliquée à l’étude de la diffusion d’élément chimique léger au sein de métaux et à la mesure des propriétés mécaniques des matériaux. L’ensemble de ces résultats ouvre un nouveau champ d’investigation de la tomographie 3D dans l’analyse volumique à l’échelle nanométrique que ce soit dans le domaine de la biologie ou de la métallurgie. / The atomic force microscope (AFM) is a powerful tool for the characterization of organic and inorganic materials of interest in physics, biology and metallurgy. However, conventional scanning probe microscopy techniques are limited to the probing surface properties, while the subsurface analysis remains difficult beyond nanoindentation methods. Thus, the present thesis is focused on two novel complementary scanning probe techniques for high-resolution volumetric investigation that were develop to tackle this persisting challenge in nanometrology. The first technique considered, called Mode Synthesizing Atomic Force Microscopy (MSAFM), has been exploited in collaboration with Dr. Laurene Tetard of University of Central Florida to explore the volume of materials with high spatial resolution by means of mechanical actuation of the tip and the sample with acoustic waves of frequencies in the MHz range. A comprehensive study of the impact of the frequency parameters on the performance of subsurface imaging has been conducted through the use of calibrated samples and led to the validation of a numerical model for quantitative interpretation. Furthermore, this non-invasive technique has been utilized to locate lipid vesicles inside bacteria (in collaboration with Pr. A. Dazzi and M.-J. Virolle of Université Paris Sud, Orsay). Furthermore, we have combined this ultrasonic approach with infra-red microscopy, to add chemical speciation aimed at identifying the subsurface features, which represents a great advance for volume and chemical characterization of biological samples. The second technique considered is the Scanning Microwave Microscopy, which was developed in collaboration with Keysight society. Similar to acoustic-based microscopy, this non-invasive technique provided physical and chemical characterizations based on the interaction of micro-waves radiations with the matter (with frequency ranging from 0.2 and 16 GHz). Particularly, for metallic samples we performed volumetric characterization based on the skin effect of the materials. On the other hand, we have used this technique to analyze the diffusion of light chemical elements in metals and measured the effect of changes in mechanical properties of materials on their conductivity.Overall, these results constitute a new line of research involving non-destructive subsurface high resolution analysis by means of the AFM of great potential for several fields of research.

Page generated in 0.0133 seconds