11 |
Reconstruction 3D des artères par imagerie intravasculaire ultrasonore (IVUS) et angiographie monoplanJourdain, Mélissa January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
12 |
3D Surface Analysis for the Automated Detection of Deformations on Automotive PanelsYogeswaran, Arjun 16 May 2011 (has links)
This thesis examines an automated method to detect surface deformations on automotive panels for the purpose of quality control along a manufacturing assembly line.
Automation in the automotive manufacturing industry is becoming more prominent, but quality control is still largely performed by human workers. Quality control is important in the context of automotive body panels as deformations can occur along the assembly line such as inadequate handling of parts or tools around a vehicle during assembly, rack storage, and shipping from subcontractors. These defects are currently identified and marked, before panels are either rectified or discarded. This work attempts to develop an automated system to detect deformations to alleviate the dependence on human workers in quality control and improve performance by increasing speed and accuracy.
Some techniques make use of an ideal CAD model behaving as a master work, and panels scanned on the assembly line are compared to this model to determine the location of deformations. This thesis presents a solution for detecting deformations of various scales without a master work. It also focuses on automated analysis requiring minimal intuitive operator-set parameters and provides the ability to classify the deformations as dings, which are deformations that protrude from the surface, or dents, which are depressions into the surface.
A complete automated deformation detection system is proposed, comprised of a feature extraction module, segmentation module, and classification module, which outputs the locations of deformations when provided with the 3D mesh of an automotive panel. Two feature extraction techniques are proposed. The first is a general feature extraction technique for 3D meshes using octrees for multi-resolution analysis and evaluates the amount of surface variation to locate deformations. The second is specifically designed for the purpose of deformation detection, and analyzes multi-resolution cross-sections of a 3D mesh to locate deformations based on their estimated size. The performance of the proposed automated deformation detection system, and all of its sub-modules, is tested on a set of meshes which represent differing characteristics of deformations in surface panels, including deformations of different scales. Noisy, low resolution meshes are captured from a 3D acquisition, while artificial meshes are generated to simulate ideal acquisition conditions. The proposed system shows accurate results in both ideal situations as well as non-ideal situations under the condition of noise and complex surface curvature by extracting only the deformations of interest and accurately classifying them as dings or dents.
|
13 |
3D Surface Analysis for the Automated Detection of Deformations on Automotive PanelsYogeswaran, Arjun 16 May 2011 (has links)
This thesis examines an automated method to detect surface deformations on automotive panels for the purpose of quality control along a manufacturing assembly line.
Automation in the automotive manufacturing industry is becoming more prominent, but quality control is still largely performed by human workers. Quality control is important in the context of automotive body panels as deformations can occur along the assembly line such as inadequate handling of parts or tools around a vehicle during assembly, rack storage, and shipping from subcontractors. These defects are currently identified and marked, before panels are either rectified or discarded. This work attempts to develop an automated system to detect deformations to alleviate the dependence on human workers in quality control and improve performance by increasing speed and accuracy.
Some techniques make use of an ideal CAD model behaving as a master work, and panels scanned on the assembly line are compared to this model to determine the location of deformations. This thesis presents a solution for detecting deformations of various scales without a master work. It also focuses on automated analysis requiring minimal intuitive operator-set parameters and provides the ability to classify the deformations as dings, which are deformations that protrude from the surface, or dents, which are depressions into the surface.
A complete automated deformation detection system is proposed, comprised of a feature extraction module, segmentation module, and classification module, which outputs the locations of deformations when provided with the 3D mesh of an automotive panel. Two feature extraction techniques are proposed. The first is a general feature extraction technique for 3D meshes using octrees for multi-resolution analysis and evaluates the amount of surface variation to locate deformations. The second is specifically designed for the purpose of deformation detection, and analyzes multi-resolution cross-sections of a 3D mesh to locate deformations based on their estimated size. The performance of the proposed automated deformation detection system, and all of its sub-modules, is tested on a set of meshes which represent differing characteristics of deformations in surface panels, including deformations of different scales. Noisy, low resolution meshes are captured from a 3D acquisition, while artificial meshes are generated to simulate ideal acquisition conditions. The proposed system shows accurate results in both ideal situations as well as non-ideal situations under the condition of noise and complex surface curvature by extracting only the deformations of interest and accurately classifying them as dings or dents.
|
14 |
Segmentation of 3D Carotid Ultrasound Images Using Weak Geometric PriorsSolovey, Igor January 2010 (has links)
Vascular diseases are among the leading causes of death in Canada and around the globe. A major underlying cause of most such medical conditions is atherosclerosis, a gradual accumulation of plaque on the walls of blood vessels. Particularly vulnerable to atherosclerosis is the carotid artery, which carries blood to the brain. Dangerous narrowing of the carotid artery can lead to embolism, a dislodgement of plaque fragments which travel to the brain and are the cause of most strokes. If this pathology can be detected early, such a deadly scenario can be potentially prevented through treatment or surgery. This not only improves the patient's prognosis, but also dramatically lowers the overall cost of their treatment.
Medical imaging is an indispensable tool for early detection of atherosclerosis, in particular since the exact location and shape of the plaque need to be known for accurate diagnosis. This can be achieved by locating the plaque inside the artery and measuring its volume or texture, a process which is greatly aided by image segmentation. In particular, the use of ultrasound imaging is desirable because it is a cost-effective and safe modality. However, ultrasonic images depict sound-reflecting properties of tissue, and thus suffer from a number of unique artifacts not present in other medical images, such as acoustic shadowing, speckle noise and discontinuous tissue boundaries. A robust ultrasound image segmentation technique must take these properties into account.
Prior to segmentation, an important pre-processing step is the extraction of a series of features from the image via application of various transforms and non-linear filters. A number of such features are explored and evaluated, many of them resulting in piecewise smooth images. It is also proposed to decompose the ultrasound image into several statistically distinct components. These components can be then used as features directly, or other features can be obtained from them instead of the original image. The decomposition scheme is derived using Maximum-a-Posteriori estimation framework and is efficiently computable.
Furthermore, this work presents and evaluates an algorithm for segmenting the carotid artery in 3D ultrasound images from other tissues. The algorithm incorporates information from different sources using an energy minimization framework. Using the ultrasound image itself, statistical differences between the region of interest and its background are exploited, and maximal overlap with strong image edges encouraged. In order to aid the convergence to anatomically accurate shapes, as well as to deal with the above-mentioned artifacts, prior knowledge is incorporated into the algorithm by using weak geometric priors. The performance of the algorithm is tested on a number of available 3D images, and encouraging results are obtained and discussed.
|
15 |
Segmentation of 3D Carotid Ultrasound Images Using Weak Geometric PriorsSolovey, Igor January 2010 (has links)
Vascular diseases are among the leading causes of death in Canada and around the globe. A major underlying cause of most such medical conditions is atherosclerosis, a gradual accumulation of plaque on the walls of blood vessels. Particularly vulnerable to atherosclerosis is the carotid artery, which carries blood to the brain. Dangerous narrowing of the carotid artery can lead to embolism, a dislodgement of plaque fragments which travel to the brain and are the cause of most strokes. If this pathology can be detected early, such a deadly scenario can be potentially prevented through treatment or surgery. This not only improves the patient's prognosis, but also dramatically lowers the overall cost of their treatment.
Medical imaging is an indispensable tool for early detection of atherosclerosis, in particular since the exact location and shape of the plaque need to be known for accurate diagnosis. This can be achieved by locating the plaque inside the artery and measuring its volume or texture, a process which is greatly aided by image segmentation. In particular, the use of ultrasound imaging is desirable because it is a cost-effective and safe modality. However, ultrasonic images depict sound-reflecting properties of tissue, and thus suffer from a number of unique artifacts not present in other medical images, such as acoustic shadowing, speckle noise and discontinuous tissue boundaries. A robust ultrasound image segmentation technique must take these properties into account.
Prior to segmentation, an important pre-processing step is the extraction of a series of features from the image via application of various transforms and non-linear filters. A number of such features are explored and evaluated, many of them resulting in piecewise smooth images. It is also proposed to decompose the ultrasound image into several statistically distinct components. These components can be then used as features directly, or other features can be obtained from them instead of the original image. The decomposition scheme is derived using Maximum-a-Posteriori estimation framework and is efficiently computable.
Furthermore, this work presents and evaluates an algorithm for segmenting the carotid artery in 3D ultrasound images from other tissues. The algorithm incorporates information from different sources using an energy minimization framework. Using the ultrasound image itself, statistical differences between the region of interest and its background are exploited, and maximal overlap with strong image edges encouraged. In order to aid the convergence to anatomically accurate shapes, as well as to deal with the above-mentioned artifacts, prior knowledge is incorporated into the algorithm by using weak geometric priors. The performance of the algorithm is tested on a number of available 3D images, and encouraging results are obtained and discussed.
|
16 |
Reconstruction 3D des artères par imagerie intravasculaire ultrasonore (IVUS) et angiographie monoplanJourdain, Mélissa January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
17 |
3D Surface Analysis for the Automated Detection of Deformations on Automotive PanelsYogeswaran, Arjun 16 May 2011 (has links)
This thesis examines an automated method to detect surface deformations on automotive panels for the purpose of quality control along a manufacturing assembly line.
Automation in the automotive manufacturing industry is becoming more prominent, but quality control is still largely performed by human workers. Quality control is important in the context of automotive body panels as deformations can occur along the assembly line such as inadequate handling of parts or tools around a vehicle during assembly, rack storage, and shipping from subcontractors. These defects are currently identified and marked, before panels are either rectified or discarded. This work attempts to develop an automated system to detect deformations to alleviate the dependence on human workers in quality control and improve performance by increasing speed and accuracy.
Some techniques make use of an ideal CAD model behaving as a master work, and panels scanned on the assembly line are compared to this model to determine the location of deformations. This thesis presents a solution for detecting deformations of various scales without a master work. It also focuses on automated analysis requiring minimal intuitive operator-set parameters and provides the ability to classify the deformations as dings, which are deformations that protrude from the surface, or dents, which are depressions into the surface.
A complete automated deformation detection system is proposed, comprised of a feature extraction module, segmentation module, and classification module, which outputs the locations of deformations when provided with the 3D mesh of an automotive panel. Two feature extraction techniques are proposed. The first is a general feature extraction technique for 3D meshes using octrees for multi-resolution analysis and evaluates the amount of surface variation to locate deformations. The second is specifically designed for the purpose of deformation detection, and analyzes multi-resolution cross-sections of a 3D mesh to locate deformations based on their estimated size. The performance of the proposed automated deformation detection system, and all of its sub-modules, is tested on a set of meshes which represent differing characteristics of deformations in surface panels, including deformations of different scales. Noisy, low resolution meshes are captured from a 3D acquisition, while artificial meshes are generated to simulate ideal acquisition conditions. The proposed system shows accurate results in both ideal situations as well as non-ideal situations under the condition of noise and complex surface curvature by extracting only the deformations of interest and accurately classifying them as dings or dents.
|
18 |
3D Surface Analysis for the Automated Detection of Deformations on Automotive PanelsYogeswaran, Arjun January 2011 (has links)
This thesis examines an automated method to detect surface deformations on automotive panels for the purpose of quality control along a manufacturing assembly line.
Automation in the automotive manufacturing industry is becoming more prominent, but quality control is still largely performed by human workers. Quality control is important in the context of automotive body panels as deformations can occur along the assembly line such as inadequate handling of parts or tools around a vehicle during assembly, rack storage, and shipping from subcontractors. These defects are currently identified and marked, before panels are either rectified or discarded. This work attempts to develop an automated system to detect deformations to alleviate the dependence on human workers in quality control and improve performance by increasing speed and accuracy.
Some techniques make use of an ideal CAD model behaving as a master work, and panels scanned on the assembly line are compared to this model to determine the location of deformations. This thesis presents a solution for detecting deformations of various scales without a master work. It also focuses on automated analysis requiring minimal intuitive operator-set parameters and provides the ability to classify the deformations as dings, which are deformations that protrude from the surface, or dents, which are depressions into the surface.
A complete automated deformation detection system is proposed, comprised of a feature extraction module, segmentation module, and classification module, which outputs the locations of deformations when provided with the 3D mesh of an automotive panel. Two feature extraction techniques are proposed. The first is a general feature extraction technique for 3D meshes using octrees for multi-resolution analysis and evaluates the amount of surface variation to locate deformations. The second is specifically designed for the purpose of deformation detection, and analyzes multi-resolution cross-sections of a 3D mesh to locate deformations based on their estimated size. The performance of the proposed automated deformation detection system, and all of its sub-modules, is tested on a set of meshes which represent differing characteristics of deformations in surface panels, including deformations of different scales. Noisy, low resolution meshes are captured from a 3D acquisition, while artificial meshes are generated to simulate ideal acquisition conditions. The proposed system shows accurate results in both ideal situations as well as non-ideal situations under the condition of noise and complex surface curvature by extracting only the deformations of interest and accurately classifying them as dings or dents.
|
19 |
Modélisation in-silico des voies aériennes : reconstruction morphologique et simulation fonctionnellePerchet, Diane 28 November 2005 (has links) (PDF)
Dans les nouveaux protocoles thérapeutiques par voie inhalée, le dosage des particules actives reste un problème complexe qui dépend de trois principaux facteurs : leur taille, la dynamique des flux et les variations de calibre bronchique. La solution nécessite de disposer d'un modèle de distribution des gaz et aérosols administrés dans les poumons. Ventilation pulmonaire et effets du cycle respiratoire sur la dynamique des fluides deviennent deux enjeux clés de la pratique clinique.<br /><br />Dans ce contexte, le projet RNTS RMOD a pour objectif de développer un simulateur morpho-fonctionnel des voies respiratoires pour l'aide au diagnostic, au geste médico-chirurgical et à l'administration de médicaments par inhalation.<br /><br />Contribuant au projet RMOD, la recherche développée dans cette thèse propose une modélisation in-silico de la structure des voies aériennes supérieures (VAS) et proximales (VAP) à partir d'examens tomodensitométriques (TDM). L'investigation morphologique et la simulation fonctionnelle bénéficient alors de géométries 3D réelles, adaptées au patient et spécifiques des pathologies rencontrées.<br /><br />La modélisation développée fait coopérer des méthodes originales de segmentation, de construction de surface maillée et d'analyse morpho-fonctionnelle.<br /><br />La segmentation des VAP est obtenue par un schéma diffusif et agrégatif gouverné par un modèle markovien, dont l'initialisation repose sur l'opérateur de coût de connexion sous contrainte topographique. De cette segmentation, l'axe central de l'arbre bronchique est extrait de manière robuste et précise en combinant information de distance, propagation de fronts, et partition conditionnelle locale. Cet axe central est représenté sous forme d'une structure hiérarchique multivaluée synthétisant caractéristiques topologiques et géométriques de l'arbre bronchique. Une surface maillée est ensuite construite en appliquant une procédure de Marching Cubes adaptative, les paramètres des différents filtres mis en jeu étant automatiquement ajustés aux caractéristiques locales du réseau bronchique conditionnellement aux attributs de l'axe central.<br /><br />La segmentation des VAS repose sur une propagation markovienne exploitant les variations locales de densité. L'initialisation combine morphologie mathématique et information de contour afin de garantir la robustesse à la topologie. Une procédure de type triangulation de Delaunay restreinte à une surface fournit ensuite la représentation maillée des VAS. Il est établi que la topologie et la géométrie des structures complexes composant les VAS sont effectivement préservées.<br /><br />Pour permettre aux médecins de valider les modèles maillés ainsi construits, un environnement virtuel 3D convivial et interactif a été réalisé. En outre, la morphologie des voies aériennes exo- et endo-luminale est analysée de façon automatique à partir de simulations d'écoulement pour des géométries réelles.<br /><br />Enfin, une modélisation unifiée des VAP et VAS est obtenue pour la première fois. Elle démontre la pertinence des approches développées. Elle ouvre la voie à la construction de modèles in-silico complets de l'appareil respiratoire ainsi qu'aux études fonctionnelles prenant en compte les paramètres morphologiques susceptibles d'influer localement ou globalement sur la dynamique des écoulements.
|
20 |
Enhanced Computerized Surgical Planning System in Craniomaxillofacial SurgeryChang, Yu-Bing 2011 May 1900 (has links)
In the field of craniomaxillofacial (CMF) surgery, surgical planning is an important and necessary procedure due to the complex nature of the craniofacial skeleton. Computed tomography (CT) has brought about a revolution in virtual diagnosis, surgical planning and simulation, and evaluation of treatment outcomes. It provides high-quality 3D image and model of skull for Computer-aided surgical planning system (CSPS).
During the planning process, one of the essential steps is to reestablish the dental occlusion. In the first project, a new approach is presented to automatically and efficiently reestablish dental occlusion. It includes two steps. The first step is to initially position the models based on dental curves and a point matching technique. The second step is to reposition the models to the final desired occlusion based on iterative surface-based minimum distance mapping with collision constraints. With linearization of rotation matrix, the alignment is modeled by solving quadratic programming. The simulation was completed on 12 sets of digital dental models. Two sets of dental models were partially edentulous, and another two sets have first premolar extractions for orthodontic treatment. Two validation methods were applied to the articulated models. The results show that using the proposed method, the dental models can be successfully articulated with a small degree of deviations from the occlusion achieved with the gold-standard method.
Low contrast resolution in CBCT image has become its major limitation in building skull model. Intensive hand-segmentation is required to reconstruct the skull model. Thin bone images are particularly affected by this limitation. In the second project, a novel segmentation approach is presented based on wavelet active shape model (WASM) for a particular interest in the outer surface of the anterior wall of maxilla. 19 CBCT datasets are used to conduct two experiments. This model-based segmentation approach is validated and compared with three different segmentation approaches. The results show that the performance of this model-based segmentation approach is better than those of the other approaches. It can achieve 0.25 +/- 0.2mm of surface error distance from the ground truth of the bone surface.
Field of view (FOV) can be reduced in order to reduce unnecessary radiation dose in CBCT. This ROI imaging is common in most of the dentomaxillofacial imaging and orthodontic practices. However, a truncation effect is created due to the truncation of projection images and becomes one of the limitation in CBCT. In the third project, a method for small region of interest (ROI) imaging and reconstruction of the image of ROI in CBCT and two experiments for measurement of dosage are presented. The first experiment shows at least 60% and 70% of radiation dose can be reduced. It also demonstrates that the image quality was still acceptable with little variation of gray by using the traditional truncation correction approach for ROI imaging. The second experiment demonstrates that the images reconstructed by CBCT reconstruction algorithms without truncation correction can be degraded to unacceptable image quality.
|
Page generated in 0.0921 seconds