• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Broken Lefschetz fibrations on smooth four-manifolds

Williams, Jonathan Dunklin 12 October 2010 (has links)
It is known that an arbitrary smooth, oriented four-manifold admits the structure of what is called a broken Lefschetz fibration. Given a broken Lefschetz fibration, there are certain modifications, realized as homotopies of the fibration map, that enable one to construct infinitely many distinct fibrations of the same manifold. The aim of this paper is to prove that these modifications are sufficient to obtain every broken Lefschetz fibration in a given homotopy class of smooth maps. One notable application is that adding an additional projection move generates all broken Lefschetz fibrations, regardless of homotopy class. The paper ends with further applications and open problems. / text
2

Branched Covering Constructions and the Symplectic Geography Problem

Hughes, Mark Clifford January 2008 (has links)
We apply branched covering techniques to construct minimal simply-connected symplectic 4-manifolds with small χ_h values. We also use these constructions to provide an alternate proof that for each s ≥ 0, there exists a positive integer λ(s) such that each pair (j,8j+s) with j ≥ λ(s) is realized as (χ_h(M),c_1^2(M)) for some minimal simply-connected symplectic M. The smallest values of λ(s) currently known to the author are also explicitly computed for 0 ≤ s ≤ 99. Our computations in these cases populate 19 952 points in the (χ,c)-plane not previously realized in the existing literature.
3

Branched Covering Constructions and the Symplectic Geography Problem

Hughes, Mark Clifford January 2008 (has links)
We apply branched covering techniques to construct minimal simply-connected symplectic 4-manifolds with small χ_h values. We also use these constructions to provide an alternate proof that for each s ≥ 0, there exists a positive integer λ(s) such that each pair (j,8j+s) with j ≥ λ(s) is realized as (χ_h(M),c_1^2(M)) for some minimal simply-connected symplectic M. The smallest values of λ(s) currently known to the author are also explicitly computed for 0 ≤ s ≤ 99. Our computations in these cases populate 19 952 points in the (χ,c)-plane not previously realized in the existing literature.
4

ARTIN PRESENTATIONS AND CLOSED 4-MANIFOLDS

Li, Jun 10 August 2017 (has links)
No description available.
5

3-manifolds algorithmically bound 4-manifolds

Churchill, Samuel 27 August 2019 (has links)
This thesis presents an algorithm for producing 4–manifold triangulations with boundary an arbitrary orientable, closed, triangulated 3–manifold. The research is an extension of Costantino and Thurston’s work on determining upper bounds on the number of 4–dimensional simplices necessary to construct such a triangulation. Our first step in this bordism construction is the geometric partitioning of an initial 3–manifold M using smooth singularity theory. This partition provides handle attachment sites on the 4–manifold Mx[0,1] and the ensuing handle attachments eliminate one of the boundary components of Mx[0,1], yielding a 4-manifold with boundary exactly M. We first present the construction in the smooth case before extending the smooth singularity theory to triangulated 3–manifolds. / Graduate
6

Seiberg-Witten theory on 4-manifolds with periodic ends

Veloso, Diogo 19 December 2014 (has links)
Dans cette thèse on prouve des résultats analytiques sur la théorie cohomotopique de Seiberg-Witten pour des 4-variétes Riemanniennes Spinc(4) a bouts périodiques, (X,g,τ). Nos résultats montrent, que sur certaines conditions techniques en (X, g, τ ),, cette nouvelle version est cohérente et mène a des invariants de Seiberg-Witten.Premièrement, en utilisant le critère de Taubes pour des operateurs périodiques dans des variétes a bouts périodiques, on montre que pour une 4-varieté Riemmanienne a bouts périodiques (X, g) vérifiant certaines conditions topologiques, le Laplacian ∆+ : L2(Λ2+) → L2(Λ2+) est un opérateur de Fredholm. On prouve une décomposition de type Hodge pour des 1-formes de X, a poids positif.Ensuite on prouve, en assumant certaines conditions topologiques et courbure scalaire non-negative sur les bouts, que l'opérateur de Dirac associé a une connection périodique (ASD a l'infini) est Fredholm.Dans la deuxième partie de la thèse on démontre un isomorphisme entre le groupe de cohomologie de de Rham Hd1R(X,iR), et le groupe harmonique intervenant dans la decomposition de Hodge des 1-formes de X a poids positif. On prouve l'existence de deux séquences exactes courtes liant le groupe de jauge de l'espace de modules de Seiberg-Witten et le groupe de cohomologie H1(X, 2πiZ).Dans la troisième partie on prouve les principaux résultats: la coercitivité de l'application de Seiberg-Witten et la compacité de l'espace de moduli pour une 4-varieté a bouts périodiques (X, g, τ ), vérifiant les conditions mentionnées plus haut.Finalment, utilisant la coercivité, on montre l'existence d'un invariant cohomotopique de type Seiberg- Witten type associé a (X, g, τ ). / In this thesis we prove analytic results about a cohomotopical Seiberg-Witten theory for a Riemannian, Spinc(4) 4-manifold with periodic ends, (X,g,τ) . Our results show that, under certain technical assumptions on (X, g, τ ), this new version is coher- ent and leads to Seiberg-Witten type invariants for this new class of 4-manifolds.First, using Taubes criteria for end-periodic operators on manifolds with periodic ends, we show that, for a Riemannian 4-manifold with periodic ends (X, g), verifying certain topological conditions, the Laplacian ∆+ : L2(Λ2+) → L2(Λ2+) is a Fredholm operator. This allows us to prove an important Hodge type decomposition for positively weighted Sobolev 1-forms on X.We prove, assuming non-negative scalar curvature on each end and certain technical topological conditions, that the associated Dirac operator associated with an end-periodic connection (which is ASD at infinity) is Fredholm.In the second part of the thesis we establish an isomorphism between be- tween the de Rham cohomology group, Hd1R(X,iR) (which is a topological in- variant of X) and the harmonic group intervening in the above Hodge type decomposition of the space of positively weighted 1-forms on X. We also prove two short exact sequences relating the gauge group of our Seiberg-Witten moduli problem and the cohomology group H1(X, 2πiZ).In the third part, we prove our main results: the coercivity of the Seiberg-Witten map and compactness of the moduli space for a 4-manifold with periodic ends (X,g,τ) verifying the above conditions.Finally, using our coercitivity property, we show that a Seiberg-Witten type cohomotopy invariant associated to (X, g, τ ) can be defined

Page generated in 0.0371 seconds